
1

2

Table of Contents

Executive Summary 4

Project Context 4

Audit scope 7

Security Rating 8

Intended Smart Contract Behaviours 10

Code Quality 12

Audit Resources 12

Dependencies 12

Severity Definitions 13

Audit Findings 14

Centralisation 21

Conclusion 22

Our Methodology 23

Disclaimers 25

About Hashlock 26

Hashlock Pty Ltd

3

CAUTION

THIS DOCUMENT IS A SECURITY AUDIT REPORT AND MAY CONTAIN

CONFIDENTIAL INFORMATION. THIS INCLUDES IDENTIFIED

VULNERABILITIES AND MALICIOUS CODE THAT COULD BE USED TO

COMPROMISE THE PROJECT. THIS DOCUMENT SHOULD ONLY BE FOR

INTERNAL USE UNTIL ISSUES ARE RESOLVED. ONCE VULNERABILITIES ARE

REMEDIATED, THIS REPORT CAN BE MADE PUBLIC. THE CONTENT OF THIS

REPORT IS OWNED BY HASHLOCK PTY LTD FOR THE USE OF THE CLIENT.

Hashlock Pty Ltd

4

Executive Summary

The Balanced team partnered with Hashlock to conduct a security audit of their

Balanced protocol smart contracts. Hashlock manually and proactively reviewed the

code to ensure the project’s team and community that the deployed contracts were

secure.

Project Context

The Balanced protocol is a decentralized platform that allows users to mint a stablecoin

called Balanced Dollar (bnUSD) by depositing cryptocurrency as collateral. bnUSD is

pegged to the US Dollar, and its value is maintained through over-collateralization,

liquidation mechanisms, and the Stability Fund, which allows 1:1 swaps with other

stablecoins.

Project Name: Balanced

Compiler Version: Rust v1.74.0

Website: https://balanced.network/

Logo:

Hashlock Pty Ltd

5

Visualised Context:

Project Name Launch Date

Balanced TBA

Compiler Version Language

Rust v1.74.0 Rust

Network Token Ticker

Solana bnUSD

Hashlock Pty Ltd

6

Project Visuals:

Hashlock Pty Ltd

7

Audit scope

We at Hashlock audited the Rust code within the Balanced project, the scope of work

included a comprehensive review of the smart contracts listed below. We tested the

smart contracts to check for their security and efficiency. These tests were undertaken

primarily through manual line-by-line analysis and were supported by software-assisted

testing.

Description Balanced Protocol Smart Contracts

Platform Solana / Rust

Audit Date August, 2024

Repo 1 https://github.com/icon-project/xcall-multi

Components ● contracts/solana/programs/xcall/src/instructi
ons/execute_call.rs

● contracts/solana/programs/xcall/src/instructi
ons/execute_rollback.rs

● contracts/solana/programs/xcall/src/instructi
ons/codec.rs

● contracts/solana/programs/xcall/src/instructi
ons/config.rs

● contracts/solana/programs/xcall/src/instructi
ons/fee.rs

● contracts/solana/programs/xcall/src/instructi
ons/handle_message.rs

● contracts/solana/programs/xcall/src/instructi
ons/send_message.rs

● contracts/solana/programs/xcall/src/connect
ion.rs

● contracts/solana/programs/xcall/src/dapp.rs
● contracts/solana/programs/xcall/src/helper.r

s
● contracts/solana/programs/xcall/src/lib.rs
● contracts/solana/programs/xcall/src/state.rs
● contracts/solana/programs/centralized-conn

ection/src/instructions/query_accounts.rs
● contracts/solana/programs/centralized-conn

ection/src/contexts.rs
● contracts/solana/programs/centralized-conn

ection/src/helper.rs

Hashlock Pty Ltd

https://github.com/icon-project/xcall-multi

8

● contracts/solana/programs/centralized-conn
ection/src/lib.rs

● contracts/solana/programs/centralized-conn
ection/src/state.rs

GitHub Commit Hash 49024516b766d129f09693fdf555f397bdd788e0

Repo 2 https://github.com/balancednetwork/Balanced-Sol
ana-contracts

Components ● programs/xcall-manager/src/states.rs
● programs/xcall-manager/src/lib.rs
● programs/xcall-manager/src/instructions.rs
● programs/xcall-manager/src/helpers.rs
● programs/xcall-manager/src/configure_prot

ocols.rs
● programs/asset-manager/src/states.rs
● programs/asset-manager/src/param_accoun

ts.rs
● programs/asset-manager/src/lib.rs
● programs/asset-manager/src/instructions.rs
● programs/balanced-dollar/src/states.rs
● programs/balanced-dollar/src/param_accou

nts.rs
● programs/balanced-dollar/src/lib.rs
● programs/balanced-dollar/src/instructions.rs
● programs/balanced-dollar/src/helpers.rs

GitHub Commit Hash be0d8bd3cad39c9d864ac808d522d4eea82d1b51

Hashlock Pty Ltd

https://github.com/balancednetwork/Balanced-Solana-contracts
https://github.com/balancednetwork/Balanced-Solana-contracts

9

Security Rating

After Hashlock’s Audit, we found the smart contracts to be “Secure”. The contracts all
follow simple logic, with correct and detailed ordering.

The ‘Hashlocked’ rating is reserved for projects that ensure ongoing security via bug bounty programs or
on-chain monitoring technology.

All issues uncovered during automated and manual analysis were meticulously reviewed

and applicable vulnerabilities are presented in the Audit Findings section.

We initially identified some significant vulnerabilities that have since been addressed.

Hashlock found:

2 High-severity vulnerabilities

3 Medium-severity vulnerabilities

3 Low-severity vulnerabilities

Caution: Hashlock’s audits do not guarantee a project's success or ethics, and are not

liable or responsible for security. Always conduct independent research about any

project before interacting.

Hashlock Pty Ltd

10

Intended Smart Contract Behaviours

Claimed Behaviour Actual Behaviour

XCall

- Allows users to:

- Send cross-chain messages

- Process incoming message requests and

results

- Process failed cross-chain messages and

rollbacks

- Allows admins to:

- Update protocol configurations

Program achieves this

functionality.

Centralized Connection

- Periphery contract used to:

- Send, receive, and revert messages

- Allows admins to:

- Update protocol configurations

- Claim protocol fees

Program achieves this

functionality.

XCallManager

- Periphery contract used to:

- Verify protocols used in the cross-chain

bridging

- Handle call messages

- Allows admins to:

- Update protocol configurations

Program achieves this

functionality.

AssetManager

- Allows users to:

- Send deposit messages with attached SPL

or native tokens

- Handle call messages

Program achieves this

functionality.

Hashlock Pty Ltd

11

- Allows admins to:

- Update protocol configurations

Balanced Dollar

- Allows users to:

- Transfer bnUSD tokens to other chains

with message data

- Handle call messages

Program achieves this

functionality.

Hashlock Pty Ltd

12

Code Quality

This audit scope involves the smart contracts for the Balanced project, as outlined in

the Audit Scope section. All contracts, libraries, and interfaces mostly follow standard

best practices to help avoid unnecessary complexity that increases the likelihood of

exploitation, however, some refactoring was required.

The code is very well commented on and closely follows best practice nat-spec styling.

All comments are correctly aligned with code functionality.

Audit Resources

We were given the Balanced projects smart contract code in the form of GitHub access.

As mentioned above, code parts are well-commented. The logic is straightforward, and

therefore it is easy to quickly comprehend the programming flow as well as the complex

code logic. The comments help understand the overall architecture of the protocol.

Dependencies

Per our observation, the libraries used in this smart contracts infrastructure are based

on well-known industry-standard open-source projects.

Apart from libraries, its functions are used in external smart contract calls.

Hashlock Pty Ltd

13

Severity Definitions

Significance Description

High

High-severity vulnerabilities can result in loss of funds,
asset loss, access denial, and other critical issues that
will result in the direct loss of funds and control by the
owners and community.

Medium
Medium-level difficulties should be solved before
deployment, but won't result in loss of funds.

Low
Low-level vulnerabilities are areas that lack best
practices that may cause small complications in the
future.

Gas Gas Optimisations, issues, and inefficiencies

Hashlock Pty Ltd

14

Audit Findings

High

[H-01] instruction.rs#deposit_token, deposit_native - Missing ownership

validation allows users to fake deposits, causing a loss of funds for the protocol

Description

When a user transfers native or SPL tokens to other chains, no validation ensures the

account deposited belongs to the protocol. This means that users could send the funds

into their own accounts, tricking the protocol into thinking the deposit has been made.

Vulnerability Details

The deposit_token and deposit_native functions allow users to deposit SPL or native

tokens and dispatch a message in

programs/asset-manager/src/instructions.rs:93-167. However, no validation ensures

that the funds are correctly deposited into accounts owned by the protocol.

In particular, the ctx.accounts.vault_token_account and

ctx.accounts.vault_native_account accounts are not validated to be owned by the

program. Users could specify another account they own and deposit into it, causing the

protocol to receive zero funds even though the deposit transaction succeeded.

Impact

Users would receive a refund of tokens they never deposited, causing a loss of funds for

the protocol. This occurs when the handle_call_message instruction is called in

programs/asset-manager/src/instructions.rs:289-293.

Recommendation

Consider validating that the ctx.accounts.vault_token_account and

ctx.accounts.vault_native_account accounts are owned by the program. For example,

ctx.accounts.vault_token_account should be validated with [b"vault",

Hashlock Pty Ltd

15

mint.as_ref()] seed constraint, and ctx.accounts.vault_native_account should be

validated with [b"vault_native"] seed constraint.

Status

Resolved

[H-02] instruction.rs#handle_call_message - Missing PDA validation allows

users to mint an arbitrary amount of tokens

Description

The ctx.accounts.state is not validated as the expected PDA owned by the program,

allowing users to pass their malicious PDA with arbitrary parameters to bypass

authentication.

Vulnerability Details

The handle_call_message function handles CROSS_TRANSFER and CROSS_TRANSFER_REVERT

operations in programs/balanced-dollar/src/instructions.rs:138-177. It is intended

only to be called by xCall from programs/balanced-dollar/src/states.rs:64, which then

mints a specified amount of bnUSD token to the recipient.

However, the state account in programs/balanced-dollar/src/states.rs:46 is not

validated to be the intended PDA owned by the program. This allows users to

impersonate xCall by passing a PDA with the State.xcall value as their controlled

address, bypassing the signer validation.

Impact

Users can steal funds by minting any arbitrary amount of bnUSD token, triggering

protocol insolvency as the minted tokens are not backed by sufficient funds.

Recommendation

Consider validating that ctx.accounts.state is the correct PDA by checking it with the

[b"state"] seed constraint.

Hashlock Pty Ltd

16

Status

Resolved

Medium

[M-01] instruction.rs#verify_protocols - Unchecked return values cause

validation failure

Description

In several instances of the codebase, results from function validations are ignored. This

causes the validation to be ineffective, potentially introducing security issues.

Vulnerability Details

The verify_protocols function in programs/asset-manager/src/instructions.rs:240

calls xcall_manager::cpi::verify_protocols from the xCall manager program.

However, the return boolean value that indicates whether the protocol is verified or not

is ignored. This means that if the boolean returns as false, an error is not propagated to

halt the transaction execution.

Note that validation results are also ignored in the following instances:

● programs/balanced-dollar/src/instructions.rs:215

● programs/asset-manager/src/instructions.rs:493

● programs/asset-manager/src/instructions.rs:522

Impact

The handle_call_message instruction can be executed even though the protocol

validation has failed, which is incorrect as the transaction should revert to an error.

Additionally, the withdraw_token and withdraw_native_token instructions can be

executed even though the AssetManagerError::ExceedsWithdrawLimit error has been

raised.

Hashlock Pty Ltd

17

Recommendation

Consider returning an error if the validation has failed in the handle_call_message,

withdraw_token, and withdraw_native_token instructions.

Status

Resolved

[M-02] Programs - Accounts are not validated to be the expected PDA

Description

In multiple instances of the codebase, user-supplied accounts are not enforced to be

expected PDA owned by the program. This allows users to pass incorrect accounts with

arbitrary parameters, potentially introducing security issues.

Vulnerability Details

PDA represents data accounts that hold state values and will be utilized by the program.

It is important to validate them to ensure the stored values are correct.

The following accounts are not validated across the codebase:

● pub token_state: Account<'info, TokenState>

○ programs/asset-manager/src/states.rs:50

○ programs/asset-manager/src/states.rs:115

● pub xcall_manager_state: Account<'info, xcall_manager::XmState>

○ programs/asset-manager/src/states.rs:68

○ programs/asset-manager/src/states.rs:128

○ programs/balanced-dollar/src/states.rs:29

○ programs/balanced-dollar/src/states.rs:58

● pub state: Account<'info, State>

○ programs/balanced-dollar/src/states.rs:74

● pub state: Account<'info, XmState>

○ programs/xcall-manager/src/states.rs:55

○ programs/xcall-manager/src/states.rs:64

○ programs/xcall-manager/src/states.rs:70

Hashlock Pty Ltd

18

Impact

Users may pass malicious PDA with arbitrary values to circumvent validations.

Recommendation

Consider validating the accounts to the expected PDA with the intended seed

constraints.

Status

Resolved

[M-03] instruction.rs#handle_call_message - Insufficient validations when

handling xCall messages

Description

The handle_call_message instruction does not perform sufficient validation to ensure

the provided accounts match the expected address from the message data.

Vulnerability Details

The handle_call_message function in

programs/balanced-dollar/src/instructions.rs:116 does not perform sufficient

validation to ensure the funds are sent to the correct recipient. Specifically, the recipient

address (ctx.accounts.to) should be equal to message.to for the CROSS_TRANSFER

operation, while for the CROSS_TRANSFER_REVERT operation, the recipient should be

message.account.

Additionally, the handle_token_call_message function in

programs/asset-manager/src/instructions.rs:373-397 does not validate that the SPL

token (mint.key) equals the intended token to be withdrawn (message.token_address).

Impact

Funds could be sent to incorrect recipient addresses, and SPL tokens could be sent with

a different token than expected, causing a loss of funds scenario.

Hashlock Pty Ltd

19

Recommendation

Consider implementing validations to ensure the accounts match the message's

recipient and mint token addresses.

Status

Resolved

Low

[L-01] configure_protocols.rs - Duplicate constant defined

Description

The CONFIGURE_PROTOCOLS constant is defined in

programs/xcall-manager/src/configure_protocols.rs:10 and

programs/xcall-manager/src/helpers.rs:5 with the same variable name and value.

Recommendation

Consider only defining the constant once across the codebase to increase code

readability and maintainability.

Status

Resolved

[L-02] Programs - Hardcoded seed inputs

Description

In multiple instances of the codebase, seed inputs are applied manually instead of

referencing them with variables. For example, the ctx.accounts.state account

validation depends on the hardcoded "state" seed constraint in

programs/xcall-manager/src/states.rs:7, 33, and 40. This approach is problematic

because an accidental typo would cause the supplied accounts to resolve into incorrect

PDAs.

Hashlock Pty Ltd

20

Recommendation

Consider defining constant variables for the seed values and reference them across the

codebase instead of manually hardcoding them.

Status

Resolved

[L-03] helpers.rs#decode_cross_transfer_revert - Lack of validation of RLP

data size

Description

The decode_cross_transfer_revert function in

programs/balanced-dollar/src/helpers.rs:49-66 does not validate the

rlp.item_count() equals 3, which is expected as shown in

programs/balanced-dollar/src/structs/cross_transfer_revert.rs:15.

Additionally, the decode_deposit_revert_msg function in

programs/asset-manager/src/helpers.rs:58-80 suffers from the same issue because it

does not ensure rlp.item_count() equals 4, as shown in

programs/asset-manager/src/structs/deposit_revert.rs:16.

Recommendation

Consider validating that the RLP data size matches the expected length in the

decode_cross_transfer_revert and decode_deposit_revert_msg functions.

Status

Resolved

Hashlock Pty Ltd

21

Centralisation

The Balanced project values security and utility over decentralisation.

The owner executable functions within the protocol increase security and functionality

but depend highly on internal team responsibility.

Hashlock Pty Ltd

22

Conclusion

After Hashlocks analysis, the Balanced project seems to have a sound and well-tested

code base, now that our vulnerability findings have been resolved and acknowledged.

Overall, most of the code is correctly ordered and follows industry best practices. The

code is well commented on as well. To the best of our ability, Hashlock is not able to

identify any further vulnerabilities.

Hashlock Pty Ltd

23

Our Methodology

Hashlock strives to maintain a transparent working process and to make our audits a

collaborative effort. The objective of our security audits is to improve the quality of

systems and upcoming projects we review and to aim for sufficient remediation to help

protect users and project leaders. Below is the methodology we use in our security audit

process.

Manual Code Review:

In manually analysing all of the code, we seek to find any potential issues with code

logic, error handling, protocol and header parsing, cryptographic errors, and random

number generators. We also watch for areas where more defensive programming could

reduce the risk of future mistakes and speed up future audits. Although our primary

focus is on the in-scope code, we examine dependency code and behavior when it is

relevant to a particular line of investigation.

Vulnerability Analysis:

Our methodologies include manual code analysis, user interface interaction, and white

box penetration testing. We consider the project's website, specifications, and

whitepaper (if available) to attain a high-level understanding of what functionality the

smart contract under review contains. We then communicate with the developers and

founders to gain insight into their vision for the project. We install and deploy the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Hashlock Pty Ltd

24

Documenting Results:

We undergo a robust, transparent process for analysing potential security vulnerabilities

and seeing them through to successful remediation. When a potential issue is

discovered, we immediately create an issue entry for it in this document, even though

we still need to verify the feasibility and impact of the issue. This process is vast

because we document our suspicions early even if they are later shown not to represent

exploitable vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative,

and we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyse the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take and finally, we

suggest the requirements for remediation engineering for future releases. The

mitigation and remediation recommendations should be scrutinised by the developers

and deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the contract details are

made public.

Hashlock Pty Ltd

25

Disclaimers

Hashlock’s Disclaimer

Hashlock’s team has analysed these smart contracts in accordance with the best

industry practices at the date of this report, in relation to: cybersecurity vulnerabilities

and issues in the smart contract source code, the details of which are disclosed in this

report, (Source Code); the Source Code compilation, deployment, and functionality

(performing the intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no

statements or warranties on the security of the code. It also cannot be considered a

sufficient assessment regarding the utility and safety of the code, bug-free status, or

any other statements of the contract. While we have done our best in conducting the

analysis and producing this report, it is important to note that you should not rely on

this report only. We also suggest conducting a bug bounty program to confirm the high

level of security of this smart contract.

Hashlock is not responsible for the safety of any funds and is not in any way liable for

the security of the project.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its

programming language, and other software related to the smart contract can have their

own vulnerabilities that can lead to attacks. Thus, the audit can’t guarantee the explicit

security of the audited smart contracts.

Hashlock Pty Ltd

26

About Hashlock

Hashlock is an Australian-based company aiming to help facilitate the successful

widespread adoption of distributed ledger technology. Our key services all have a focus

on security, as well as projects that focus on streamlined adoption in the business

sector.

Hashlock is excited to continue to grow its partnerships with developers and other

web3-oriented companies to collaborate on secure innovation, helping businesses and

decentralised entities alike.

Website: hashlock.com.au

Contact: info@hashlock.com.au

Hashlock Pty Ltd

http://hashlock.com.au
mailto:info@hashlock.com.au

27

Hashlock Pty Ltd

