
1

2

Table of Contents

Executive Summary 4

Project Context 4

Audit scope 7

Security Rating 10

Intended Smart Contract Behaviours 11

Code Quality 13

Audit Resources 13

Dependencies 13

Severity Definitions 14

Audit Findings 15

Centralisation 34

Conclusion 35

Our Methodology 36

Disclaimers 38

About Hashlock 39

Hashlock Pty Ltd

3

CAUTION

THIS DOCUMENT IS A SECURITY AUDIT REPORT AND MAY CONTAIN

CONFIDENTIAL INFORMATION. THIS INCLUDES IDENTIFIED

VULNERABILITIES AND MALICIOUS CODE THAT COULD BE USED TO

COMPROMISE THE PROJECT. THIS DOCUMENT SHOULD ONLY BE FOR

INTERNAL USE UNTIL ISSUES ARE RESOLVED. ONCE VULNERABILITIES ARE

REMEDIATED, THIS REPORT CAN BE MADE PUBLIC. THE CONTENT OF THIS

REPORT IS OWNED BY HASHLOCK PTY LTD FOR THE USE OF THE CLIENT.

Hashlock Pty Ltd

4

Executive Summary

The Balanced team partnered with Hashlock to conduct a security audit of their

Balanced protocol smart contracts. Hashlock manually and proactively reviewed the

code to ensure the project’s team and community that the deployed contracts were

secure.

Project Context

The Balanced protocol is a decentralized platform that allows users to mint a stablecoin

called Balanced Dollar (bnUSD) by depositing cryptocurrency as collateral. bnUSD is

pegged to the US Dollar and its value is maintained through over-collateralization,

liquidation mechanisms, and the Stability Fund, which allows 1:1 swaps with other

stablecoins.

Users can also earn rewards by depositing bnUSD into the Savings Rate, providing

liquidity, and taking advantage of arbitrage opportunities. The protocol supports various

collateral types and operates on multiple blockchains.

Project Name: Balanced

Compiler Version: ^0.8.0

Website: https://balanced.network/

Logo:

Hashlock Pty Ltd

5

Visualised Context:

Project Name Launch Date

 Balanced TBA

 Compiler Version Language

 v^0.8.0 Solidity

 Network Token Ticker

 ETH/BsC Avalanche/L2 bnUSD

Hashlock Pty Ltd

6

Project Visuals:

Hashlock Pty Ltd

7

Audit scope

We at Hashlock audited the solidity code within the Balanced project, the scope of work

included a comprehensive review of the smart contracts listed below. We tested the

smart contracts to check for their security and efficiency. These tests were undertaken

primarily through manual line-by-line analysis and were supported by software-assisted

testing.

Description Balanced Protocol Smart Contracts

Platform Ethereum / Solidity

Audit Date June, 2024

Contract 1 asset-manager/AssetManager.sol

Contract 1 MD5 Hash 8aa8b927e4b91309581e1ba8392f91e7

Contract 2 asset-manager/Messages.sol

Contract 2 MD5 Hash 03edce15fbd8a73089aeb673f4e86fa4

Contract 3 asset-manager/RLPDecodeStruct.sol

Contract 3 MD5 Hash 80c343cc971a0e652f18c4159394e6d6

Contract 4 asset-manager/RLPEncodeStruct.sol

Contract 4 MD5 Hash d157dbc9f3bfb5b0dafed131b90e3d41

Contract 5 bnusd/BalancedDollar.sol

Contract 5 MD5 Hash 1873bc5d5567d18c1ffc3933f129b3fe

Contract 6 bnusd/Messages.sol

Contract 6 MD5 Hash ad973b847b007316f28b29cbbc734322

Contract 7 bnusd/RLPDecodeStruct.sol

Contract 7 MD5 Hash 914a7424fd6968e07c08f4c76e58a267

Contract 8 bnusd/RLPEncodeStruct.sol

Contract 8 MD5 Hash 073272a5b3e8d1b291be725ddbdab29b

Hashlock Pty Ltd

8

Contract 9 oracle-proxy/OracleProxy.sol

Contract 9 MD5 Hash eed10bda95c99c41aa2bdb86222fa5bc

Contract 10 oracle-proxy/Messages.sol

Contract 10 MD5 Hash 078a9528a4721368e36c4ff4159b9089

Contract 11 oracle-proxy/RLPEncodeStruct.sol

Contract 11 MD5 Hash 26c1d17ffa522a03767b54d2afa2b89c

Contract 12 xcall-manager/XCallManager.sol

Contract 12 MD5 Hash c4c342ba0813cd091cde23fb7bc92e0e

Contract 13 xcall-manager/RLPEncodeStruct.sol

Contract 13 MD5 Hash accb35454dfa7deedbeddab7977a5ff7

Contract 14 xcall-manager/RLPDecodeStruct.sol

Contract 14 MD5 Hash 2a230f1839a461e4ce66d990dd9d3915

Contract 15 xcall-manager/Messages.sol

Contract 15 MD5 Hash 03be2f09ac5510156a1adaef23d51f03

Contract 16 library/btp2/utils/Integers.sol

Contract 16 MD5 Hash e3d539bdfbc1bc771779239375c3885b

Contract 17 library/btp2/utils/NetworkAddress.sol

Contract 17 MD5 Hash b3d02bcf18199307b399901bbf4f6387

Contract 18 library/btp2/utils/ParseAddress.sol

Contract 18 MD5 Hash 717833bbbc0f961eda0f1b00dd1dec8c

Contract 19 library/btp2/utils/RLPDecode.sol

Contract 19 MD5 Hash 8a237d675ba6b1b4a7ff47dfcb229869

Contract 20 library/btp2/utils/RLPEncode.sol

Contract 20 MD5 Hash 3d288700d76882ab990800af30932805

Contract 21 library/btp2/utils/Strings.sol

Contract 21 MD5 Hash 15688932876357610555acf8dafa69d9

Hashlock Pty Ltd

9

Contract 22 lib/interfaces/IXCallManager.sol

Contract 22 MD5 Hash 28334801583d1670e90b6ad145e1d7b9

Contract 23 evm/contracts/xcall/CallService.sol

Contract 23 MD5 Hash 9dad6a1ef15f815643ec96ccd0a0316a

Hashlock Pty Ltd

10

Security Rating

After Hashlock’s Audit, we found the smart contracts to be “Secure”. The contracts all
follow simple logic, with correct and detailed ordering. They use a series of interfaces,
and the protocol uses a list of Open Zeppelin contracts and ICON’s XCall solidity
libraries. We have identified some significant vulnerabilities that were addressed prior to
launch.

The ‘Hashlocked’ rating is reserved for projects that ensure ongoing security via bug bounty programs or
on-chain monitoring technology.

All issues uncovered during automated and manual analysis were meticulously reviewed

and applicable vulnerabilities are presented in the Audit Findings section.

All vulnerabilities we have identified have yet to be resolved or acknowledged.

Hashlock found:

2 High-severity vulnerabilities

1 Medium-severity vulnerabilities

15 Low-severity vulnerabilities

0 Gas Optimisations

Caution: Hashlock’s audits do not guarantee a project's success or ethics, and are not

liable or responsible for security. Always conduct independent research about any

project before interacting.

Hashlock Pty Ltd

11

Intended Smart Contract Behaviours

Claimed Behaviour Actual Behaviour

AssetManager.sol

- Allows users to:

- Deposit ERC20 and native ETH tokens

- Handles the cross-bridge token

deposit/withdraw logic between the

Ethereum <-> ICON chains

- Allows admins to:

- Configure and reset the withdraw rate

limit.

- Upgrade the contract.

Contract achieves this

functionality.

BalancedDollar.sol

- ERC20 contract used to:

- Handles the transfer of bnUSD between

other chains.

- Burns bnUSD on transfers to another

chain.

- Mints new bnUSD on transfers to current

chain.

- Allow admins to:

- Upgrade the contract.

Contract achieves this

functionality.

XCallManager.sol

- A periphery contract used to:

- Verify protocols used in the cross-chain

bridging.

- Allows admins to:

- Update the protocols.

Contract achieves this

functionality.

Hashlock Pty Ltd

12

- Upgrade the contract.

- Configure available sources and

destinations.

OracleProxy.sol

- A price oracle contract used to:

- Calculate the price of the assets stored in

the ERC4626 vaults.

- Send cross-chain price updates.

- Allows admins to:

- Add credit vaults.

- Remove credit vaults.

- Upgrade the contract.

Contract achieves this

functionality.

CallService.sol

- Contract to make calls between different

blockchain networks

- Handles calls to and from adapters

Contract achieves this

functionality.

Hashlock Pty Ltd

13

Code Quality

This Audit scope involves the smart contracts of the Balanced project, as outlined in the

Audit Scope section. All contracts, libraries, and interfaces mostly follow standard best

practices to help avoid unnecessary complexity that increases the likelihood of

exploitation, however, some refactoring was required.

The code is very well commented on and closely follows best practice nat-spec styling.

All comments are correctly aligned with code functionality.

Audit Resources

We were given the Balanced project’s smart contract code in the form of GitHub access.

As mentioned above, code parts are well-commented. The logic is straightforward, and

therefore it is easy to quickly comprehend the programming flow as well as the complex

code logic. The comments help us understand the overall architecture of the protocol.

Dependencies

Per our observation, the libraries used in this smart contracts infrastructure are based

on well-known industry-standard open-source projects.

Apart from libraries, its functions are used in external smart contract calls.

Hashlock Pty Ltd

14

Severity Definitions

Significance Description

High

High-severity vulnerabilities can result in loss of funds,
asset loss, access denial, and other critical issues that
will result in the direct loss of funds and control by the
owners and community.

Medium
Medium-level difficulties should be solved before
deployment, but won't result in loss of funds.

Low
Low-level vulnerabilities are areas that lack best
practices that may cause small complications in the
future.

Gas Gas Optimisations, issues, and inefficiencies

Hashlock Pty Ltd

15

Audit Findings

High

[H-01] XCallManager.sol#verifyProtocolsUnordered - Array comparison does

not work as implemented

Description

verifyProtocolsUnordered function deals with an unordered comparison of arrays.

However, the implemented function will consider these two arrays as equivalent:

['alice','alice','alice']

['alice', 'bob', 'charlie']

Vulnerability Details

… REDACTED FOR BREVITY …

for (uint i = 0; i < array1.length; i++) {

for (uint j = 0; j < array2.length; j++) {

 if (array1[i].compareTo(array2[j])) {

 break;

 } else {

 if (j == array2.length - 1) return false;

 continue;

 }

}

}

This function is satisfied by each item occuring in the other array.

Impact

This code is also relied on by external calls into this contract, i.e. through

handleCallMessage(). As demonstrated, this code will not correctly work and will

thus break assumptions made by external callers relying on this functionality.

Hashlock Pty Ltd

16

Recommendation

Either make sure that arrays do not contain duplicates, or count the number of

occurrences per item and then check that the occurrences counts are equal. Meaning if

Alice exists twice in array A it should also exist twice in array B.

Status

Resolved

[H-02] Balanced Contracts - Token transfers may not actually execute

Description

Tokens are transferred here but the returned boolean indicating success is ignored.

Therefore this function may proceed even though the transfer has actually failed.

Vulnerability Details

IERC20(token).transferFrom(msg.sender, address(this), amount);

IERC20(token).transfer(to, amount);

These functions can return bool to indicate the success of the transfer. This must not be

ignored.

Impact

The contract assumes that tokens have been transferred when they may not have been.

This will lead to a loss of funds for ERC20 implementations returning false to indicate

transfer failure.

Recommendation

Use OpenZeppelins SafeERC20 functionality i.e. safeTransferFrom() and safeTransfer(),

these will correctly deal with returned values by throwing an error.

Status

Resolved.

Hashlock Pty Ltd

17

Medium

[M-01] AssetManager.sol#_deposit - Deposit function is vulnerable to

fee-on-transfer accounting-related issues

Description

_deposit function transfers funds from the caller to the receiver via

safeTransferFrom(), but do not ensure that the actual number of tokens received is

the same as the input amount to the transfer.

Vulnerability Details

Here the _deposit function do not ensure that the actual number of tokens received is

the same as the input amount to the transfer.

 function _deposit(

 address token,

 uint amount,

 string memory to,

 bytes memory data

) internal {

 require(amount >= 0, "Amount less than minimum amount");

 IERC20(token).safeTransferFrom(msg.sender, address(this), amount);

 sendDepositMessage(token, amount, to, data, msg.value);

 }

Impact

If the token is a fee-on-transfer token, the balance after the transfer will be smaller

than expected, leading to accounting issues.

Hashlock Pty Ltd

18

Recommendation

One way to address this problem is to measure the balance before and after the

transfer, and use the difference as the amount, rather than the stated amount. For

example:

 function _deposit(

 address token,

 uint amount,

 string memory to,

 bytes memory data

) internal {

 require(amount >= 0, "Amount less than minimum amount");

 uint256 balanceBefore = IERC20(token).balanceOf(address(this))

 IERC20(token).safeTransferFrom(msg.sender, address(this), amount);

 uint256 balanceAfter = IERC20(token).balanceOf(address(this));

 uint256 actualReceived = balanceAfter - balanceBefore;

 sendDepositMessage(token, actualReceived, to, data, msg.value);

 }

Status

Resolved.

Hashlock Pty Ltd

19

Low

[L-01] Multiple Balanced Contracts - Missing zero address checks

Description

There are a number of missing zero checks in this codebase:

● /src/asset-manager/AssetManager.sol

● /src/oracle-proxy/OracleProxy.sol

● /src/xcall-manager/XCallManager.sol

● /src/bnusd/BalancedDollar.sol

Vulnerability Details

function initialize(

address _xCall,

string memory _iconOracle,

address _xCallManager

) public initializer {

xCall = _xCall;

iconOracle = _iconOracle;

xCallManager = _xCallManager;

__Ownable_init(msg.sender);

}

None of the initializers have zero address checks on any address parameter.

function configure(

address _xCall,

string memory _iconOracle,

address _xCallManager

) external onlyOwner {

xCall = _xCall;

iconOracle = _iconOracle;

xCallManager = _xCallManager;

Hashlock Pty Ltd

20

}

function setAdmin(address _admin) external onlyAdmin() {

admin = _admin;

}

The admin can be set to the zero address.

Impact

Zero checks are important in order to avoid mistakes. Zero values could indicate default

values and calls might happen due to mistakes. Setting the admin to zero will lead to a

loss of control over the contract.

Recommendation

Add tests against the zero address when accepting addresses from user input.

Status

Resolved.

[L-02] Multiple Balanced Contracts - Lack of events for important state

updates

Description

There are no events being emitted for important state updates.

Vulnerability Details

Relevant functions to consider:

OracleProxy.configure(), AssetManager.configureRateLimit(), AssetManager.resetLimit(),

XCallManager.proposeRemoval(),XCallManager.whitelistAction(),

XCallManager.removeAction(), XCallManager.setAdmin(), XCallManager.setProtocols().

Hashlock Pty Ltd

21

Impact

This makes it harder for users to detect changes in the contract state. Events are also

relevant for 3rd party developers who might want to build external tools.

Recommendation

Add some events to support 3rd party developers.

Status

Resolved.

[L-03] Multiple Balanced Contracts - Return value not checked

Description

There are 3 instances of calls being done with ICallService(xCall).sendCallMessage{}().

This function returns a value which is ignored:

● /src/asset-manager/AssetManager.sol:sendCallMessage(..)

● /src/oracle-proxy/OracleProxy.sol:sendCallMessage(..)

● /src/bnusd/BalancedDollar.sol:sendCallMessage(..)

Vulnerability Details

ICallService(xCall).sendCallMessage{value: msg.value}(

iconBnUSD,

xcallMessage.encodeCrossTransfer(),

rollback.encodeCrossTransferRevert(),

protocols.sources,

protocols.destinations

);

The function called returns uint256:

function sendCallMessage(

Hashlock Pty Ltd

22

string memory _to,

bytes memory _data,

bytes memory _rollback,

string[] memory sources,

string[] memory destinations

) external payable returns (

uint256

);

Impact

Since this is an external function, it is not clear whether this function can fail and

attempt to indicate that using the returned value i.e. by returning 0.

Recommendation

Verify this is implemented correctly. If the return value is supposed to be ignored, state

this in a comment and explain why the return value should be ignored.

Status

Acknowledged.

[L-04] OracleProxy.sol#fetchCreditVaultPrice - Decimal conversion function

does not work for assets with more than 18 decimals

Description

The function fetchCreditVaultPrice implements a conversion logic for assets with

different numbers of decimals. This function however can not work for assets with more

than 18 decimals as the calculation will underflow. At the same time nothing prevents

assets with more decimals from being used.

Vulnerability Details

rate = rate * 10**(18-assetDecimals);

The calculation will underflow if assetDecimals is > 18.

Hashlock Pty Ltd

23

Impact

This contract won't work for assets with more than 18 decimals.

Recommendation

Adjust the logic if the asset has more than 18 decimals.

Status

Acknowledged.

[L-05] AssetManager - Invalid amount checks

Description

The amount in the _deposit function is checked to be >= 0 when it should be checked

to be > 0. Also, the verifyWithdraw function does not establish that the amount is

less or equal to balance, which will cause an underflow and revert.

Vulnerability Details

function _deposit(

address token,

uint amount,

string memory to,

bytes memory data

) internal {

require(amount >= 0, "Amount less than minimum amount");

...

}

function verifyWithdraw(address token, uint amount) internal {

uint balance = balanceOf(token);

uint limit = calculateLimit(balance, token);

require(balance - amount >= limit, "exceeds withdraw limit");

...

Hashlock Pty Ltd

24

}

Impact

Transferring 0 tokens in _deposit will just burn gas. The verifyWithdraw function will

revert with an underflow if the amount exceeds balance.

Recommendation

Do not allow 0 amounts. Check if the amount exceeds the available balance.

Status

Resolved.

[L-06] XCallManager.sol#initialize - Duplicates accepted in various arrays

Description

There are a number of arrays used in this contract. All of which do accept duplicates

which leads to issues.

Vulnerability Details

function initialize(

address _xCall,

string memory _iconGovernance,

address _admin,

string[] memory _sources,

string[] memory _destinations

) public initializer {

xCall = _xCall;

xCallNetworkAddress = ICallService(xCall).getNetworkAddress();

iconGovernance = _iconGovernance;

admin = _admin;

sources = _sources;

destinations = _destinations;

__Ownable_init(msg.sender);

Hashlock Pty Ltd

25

}

These are not checked for duplicates. Also make sure to verify they are equal length if

required. The same also applies to:

function setProtocols(string[] memory _sources, string[] memory _destinations)
external onlyOwner() {

sources = _sources;

destinations = _destinations;

}

…. REDACTED FOR BREVITY ..

} else if (method.compareTo(Messages.CONFIGURE_PROTOCOLS_NAME)) {

Messages.ConfigureProtocols memory message = data

 .decodeConfigureProtocols();

sources = message.sources;

destinations = message.destinations;

}

Impact

Duplicates will cause issues with array comparison and when removing items.

Recommendation

Make sure the inputs do not contain duplicates.

Status

Resolved.

[L-07] XCallManager.sol, CallService.sol#setAdmin - Transfer admin should be

a two step process

Description

The admin can be modified, there is some risk that the wrong address is set which can

not be corrected easily.

Hashlock Pty Ltd

26

Vulnerability Details

function setAdmin(address _admin) external onlyAdmin() {

admin = _admin;

}

Inputting the wrong address for admin can lead to losing access to admin only functions

in the contract. It is good practice to have a two step process when setting a new

admin.

Impact

By mistake, access to the contract may be lost.

Recommendation

It would be ideal to use a two-step transfer solution that the new admin needs to

accept. Also, consider if this function should be onlyOwner rather than onlyAdmin.

Status

Resolved.

[L-08] AssetManager.sol#configureRateLimit - Unbounded values

Description

Some inputs should be checked for bounds.

Vulnerability Details

function configureRateLimit(

address token,

uint _period,

uint _percentage

) external onlyOwner {

require(_percentage <= POINTS,"Percentage should be less than or equal to
POINTS");

Hashlock Pty Ltd

27

period[token] = _period;

...

The period for some token can be set to some huge value. There is a check elsewhere

which does prevent a division by 0 though.

function _depositNative(

uint amount,

string memory to,

bytes memory data

) internal {

require(msg.value >= amount, "Amount less than minimum amount");

uint fee = msg.value - amount;

...

The fee used here can be any value. Make sure this is correctly implemented.

Impact

The code might not work as intended if these values are extremes.

Recommendation

Make sure this functionality is implemented as intended.

Status

Resolved.

[L-09] AssetManager.sol#sendDepositMessage - Destination address not

verified

Description

The sendDepositMessage takes a string as an address. The callee should verify this is

the correct address.

Hashlock Pty Ltd

28

Vulnerability Details

function sendDepositMessage(

address token,

uint amount,

string memory to,

bytes memory data,

uint fee

) internal {

...

}

Impact

User funds might be lost if mistakes are easily made.

Recommendation

Make sure to check that this string is a valid address.

Status

Acknowledged, it’s up to the integrations to track this for now.

[L-10] Multiple Balanced Contracts - Code clarity improvements

Description

There are some places where the code can be improved for clarity and maintainability.

Vulnerability Details

uint private constant POINTS = 10000;

block.timestamp*1000000

Use _ to improve the readability of large numbers i.e.: 1_000_000.

for (uint j = 0; j < array2.length; j++) {

if (array1[i].compareTo(array2[j])) {

 break;

Hashlock Pty Ltd

29

} else {

 if (j == array2.length - 1) return false;

 continue;

}

}

The continue statement is superfluous.

function decodeDeposit(

bytes memory _rlp

) internal pure returns (Messages.Deposit memory) {

RLPDecode.RLPItem[] memory ls = _rlp.toRlpItem().toList();

return

 Messages.Deposit(

 string(ls[1].toBytes()),

 string(ls[2].toBytes()),

 string(ls[3].toBytes()),

 ls[4].toUint(),

 ls[5].toBytes()

);

}

This function is never used.

Overall the codebase also lacks comments, which are essential for helping with the

maintenance of this project.

Impact

These problems decrease the readability and maintainability of the codebase.

Recommendation

Keep the code as easy to read as possible. Improve the documentation in the codebase

to aid maintainability.

Status

Resolved.

Hashlock Pty Ltd

30

[L-11] Multiple Balanced Contracts - Use of old Solidity version

Description

The contracts allow the use of old Solidity versions starting from 0.8.0. This version was

released in December 2020.

Vulnerability Details

pragma solidity >=0.8.0

Impact

Optimizations introduced by newer versions could improve performance and reduce gas

costs.

Recommendation

Require a more recent minimum version.

Status

Acknowledged

[L-12] OracleProxy#addCreditVault - Interface compliance is not checked

Description

The function addCreditVault does not check if the given address is a contract or

complies with IERC4626 which is later required.

Vulnerability Details

function addCreditVault(address _vault) external onlyOwner {

creditVaults[_vault] = true;

}

Hashlock Pty Ltd

31

Function fetchCreditVaultPrice(address _vault) internal view
returns(Messages.UpdatePriceData memory) {

string memory symbol = IERC4626(_vault).symbol();

uint sharesDecimals = IERC4626(_vault).decimals();

...

Impact

Setting the wrong address will partially break the contract if it attempts to use this

address in other calls.

Recommendation

Check for interface compliance or whether the address is a contract.

Status

Acknowledged

[L-13] Multiple Balanced Contracts - Non Disabled Implementation Contract

Description

The upgradeable contracts do not disable initializers in the constructor, as

recommended by the imported Initializable contract. To reduce the potential attack

surface, _disableInitializers in the constructor need to be called.

Vulnerability Details

Following contracts implement UUPSUpgradeable:

● /src/asset-manager/AssetManager.sol

● /src/oracle-proxy/OracleProxy.sol

● /src/xcall-manager/XCallManager.sol

● /src/bnusd/BalancedDollar.sol

Impact

This means that anyone can call the initializer on the implementation contract to set the

contract variables and assign the roles.

Hashlock Pty Ltd

32

Recommendation

Build a constructor function in the upgradeable contracts that calls the

disableInitializers() function.

Status

Resolved.

[L-14] CallService.sol#setProtocolFee - Centralization risk for privileged

function

Description

The function allows the admin/owner to set the protocol fee. This fee is not allowed to

be 0 with the implemented check. However, the function lacks any upper boundaries for

the amount that the fee can be set in.

Vulnerability Details

function setProtocolFee(uint256 _value) external override onlyAdmin {

 require(_value >= 0, "ValueShouldBePositive");

 protocolFee = _value;

 }

Recommendation

Implement a check to set an upper boundary for the protocol fee so that the admin can

not set it to unrealistic amounts.

Status

Acknowledged.

[L-15] XCallManager.sol#getModifiedProtocols - Array writes out of bounds

Description

The getModifiedProtocols() function assumes that the item to be removed is present in

the array, which is not guaranteed.

Hashlock Pty Ltd

33

Vulnerability Details

function proposeRemoval(string memory protocol) external onlyAdmin {

proposedProtocolToRemove = protocol;

}

// Here anything can be set as something to be removed.

function getModifiedProtocols() internal view returns (string[] memory) {

….

string[] memory newArray = new string[](sources.length - 1);

uint newIndex = 0;

for (uint i = 0; i < sources.length; i++) {

if (!sources[i].compareTo(proposedProtocolToRemove)) {

 newArray[newIndex] = sources[i];

 newIndex++;

}

}

However, if proposedProtocolToRemove is not found, this will write the last item out

of bounds. This function does not consider duplicates an option.

Impact

This code could revert by doing out-of-bounds writes.

Recommendation

Make sure not to write outside of array bounds. Establish that the item to be removed is

actually present in the array. Avoid duplicates.

Status

Resolved.

Hashlock Pty Ltd

34

Centralisation

The Balanced project values security and utility over decentralisation.

The owner executable functions within the protocol increase security and functionality

but depend highly on internal team responsibility.

Hashlock Pty Ltd

35

Conclusion

After Hashlocks analysis, the Balanced project seems to have a sound and well-tested

code base, now that our findings have been resolved or acknowledged to achieve

security. Overall, most of the code is correctly ordered and follows industry best

practices. The code is well commented on as well. To the best of our ability, Hashlock is

not able to identify any further vulnerabilities.

Hashlock Pty Ltd

36

Our Methodology

Hashlock strives to maintain a transparent working process and to make our audits a

collaborative effort. The objective of our security audits are to improve the quality of

systems and upcoming projects we review and to aim for sufficient remediation to help

protect users and project leaders. Below is the methodology we use in our security audit

process.

Manual Code Review:

In manually analysing all of the code, we seek to find any potential issues with code

logic, error handling, protocol and header parsing, cryptographic errors, and random

number generators. We also watch for areas where more defensive programming could

reduce the risk of future mistakes and speed up future audits. Although our primary

focus is on the in-scope code, we examine dependency code and behavior when it is

relevant to a particular line of investigation.

Vulnerability Analysis:

Our methodologies include manual code analysis, user interface interaction, and white

box penetration testing. We consider the project's website, specifications, and

whitepaper (if available) to attain a high-level understanding of what functionality the

smart contract under review contains. We then communicate with the developers and

founders to gain insight into their vision for the project. We install and deploy the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Hashlock Pty Ltd

37

Documenting Results:

We undergo a robust, transparent process for analysing potential security vulnerabilities

and seeing them through to successful remediation. When a potential issue is

discovered, we immediately create an issue entry for it in this document, even though

we still need to verify the feasibility and impact of the issue. This process is vast

because we document our suspicions early even if they are later shown not to represent

exploitable vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative,

and we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyse the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take and finally, we

suggest the requirements for remediation engineering for future releases. The

mitigation and remediation recommendations should be scrutinised by the developers

and deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the contracts details are

made public.

Hashlock Pty Ltd

38

Disclaimers

Hashlock’s Disclaimer

Hashlock’s team has analysed these smart contracts in accordance with the best

industry practices at the date of this report, in relation to: cybersecurity vulnerabilities

and issues in the smart contract source code, the details of which are disclosed in this

report, (Source Code); the Source Code compilation, deployment, and functionality

(performing the intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no

statements or warranties on the security of the code. It also cannot be considered as a

sufficient assessment regarding the utility and safety of the code, bug-free status, or

any other statements of the contract. While we have done our best in conducting the

analysis and producing this report, it is important to note that you should not rely on

this report only. We also suggest conducting a bug bounty program to confirm the high

level of security of this smart contract.

Hashlock is not responsible for the safety of any funds and is not in any way liable for

the security of the project.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its

programming language, and other software related to the smart contract can have their

own vulnerabilities that can lead to attacks. Thus, the audit can’t guarantee explicit

security of the audited smart contracts.

Hashlock Pty Ltd

39

About Hashlock

Hashlock is an Australian-based company aiming to help facilitate the successful

widespread adoption of distributed ledger technology. Our key services all have a focus

on security, as well as projects that focus on streamlined adoption in the business

sector.

Hashlock is excited to continue to grow its partnerships with developers and other

web3-oriented companies to collaborate on secure innovation, helping businesses and

decentralised entities alike.

Website: hashlock.com.au

Contact: info@hashlock.com.au

Hashlock Pty Ltd

http://hashlock.com.au
mailto:info@hashlock.com.au

40

Hashlock Pty Ltd

