FYEDO

Security Assessment of the

Balanced Java Contracts

Balanced DAO

April 2023
Version 1.0

Presented by:

FYEO Inc.

PO Box 147044
Lakewood CO 80214
United States

Security Level
Strictly Confidential



TABLE OF CONTENTS

Executive Summary
Overview
Key Findings
Scope and Rules of Engagement
Technical Analyses and Findings
Findings
Technical Analysis
Technical Findings
General Observations
Reentrancy vulnerability in stakelCX function
Lack of validation for duration limits in Governancelmpl
Negative values are not checked in Governancelmpl
Negative values are not checked in LoansIimpl
Token symbol is not check for duplications
Our Process
Methodology
Kickoff

LIST OF FIGURES

Figure 1: Findings by Severity

Figure 2: Methodology Flow




LIST OF TABLES

Table 1: Scope

Table 2: Findings Overview




F Y E 0 Balanced DAO | Security Assessment of the Balanced Java Contracts vi.0 | 18 April 2023

EXECUTIVE SUMMARY
OVERVIEW

Balanced DAO engaged FYEO Inc. to perform a Security Assessment of the Balanced Java Contracts.

The assessment was conducted remotely by the FYEO Security Team. Testing took place on February 27
- April 03, 2023, and focused on the following objectives:

e To provide the customer with an assessment of their overall security posture and any risks that
were discovered within the environment during the engagement.

e To provide a professional opinion on the maturity, adequacy, and efficiency of the security
measures that are in place.

e To identify potential issues and include improvement recommendations based on the results of
our tests.

This report summarizes the engagement, tests performed, and findings. It also contains detailed
descriptions of the discovered vulnerabilities, steps the FYEO Security Team took to identify and validate
each issue, as well as any applicable recommendations for remediation.

KEY FINDINGS

The following issues were identified during the testing period. They have since been remediated:

e FYEO-BL-01- Reentrancy vulnerability in stakelCX function

e FYEO-BL-02 - Lack of validation for duration limits in Governancelmpl
e FYEO-BL-03 — Negative values are not checked in Governancelmpl

e FYEO-BL-04 — Negative values are not checked in Loansimpl

e FYEO-BL-05 — Token symbol is not check for duplications

Based on our review process, we conclude that the reviewed code implements the documented
functionality.

SCOPE AND RULES OF ENGAGEMENT

The FYEO Review Team performed a Security Assessment of the Balanced Java Contracts. The following

table documents the targets in scope for the engagement. No additional systems or resources were in
scope for this assessment.




F Y E 0 Balanced DAO | Security Assessment of the Balanced Java Contracts vi.0 | 18 April 2023

The source code was supplied through a public repository at
https://github.com/balancednetwork/balanced-java-contracts/tree/main/core-contracts with the
commit hash 242955ad6d50230e8ec9fe9eaece92564789c3b91.

A re-review was carried out on commit hash: 3d60070696578c3963cceb0140672¢c38674f070a

Files included in the code review ‘

balanced-java-contracts/
|— core—-contracts/
| |— BalancedOracle/

|— src/
| I— main/
| | L— java/
| | L— network/
| | L— balanced/
| | L— score/
| | L— core/
| | L— balancedoracle/
| | — BalancedOracleConstants.java
| | — BalancedOraclelImpl.java
| | — EMACalculator.java
| | L TwAPCalculator.java
DAOfund/
src/
F— intTest/
L— java/
L— network/
L— balanced/
L— score/
L— core/
L— daofund/
L — paofundIntegrationTest.java
main/
L— java/
L— network/
L— balanced/
L— score/
L— core/
L— daofund/
|— DAOfundImpl.java
L — POLManager.java

o B

e




FYEO

T E

T

Balanced DAO | Security Assessment of the Balanced Java Contracts vi.0 | 18 April 2023

L—I — — —— — ——— — —— — —— — —— — —

O
QD
3

WD Y ———————— e e

IR TN
Q
~

7

Files included in the code review

Java/
L— network/
L— balanced/

L— score/

L— core/
L— dex/

L— network/
L— balanced/

L— score/

— db/

| |— LinkedListDB. java
L — NodeDB.java

|— utils/

|— Check.java

|— Const.java

L LPMetadataDB.java
AbstractDex.java

DexDBVariables.java
DexImpl.java

L— core/
L— governance/

main/
L— java/
L— network/
L— balanced/

|— proposal/
| |— ProposalDB. java

utils/

|— EventLogger.java

L SetupManager.java

|
|
n
|
|
|
|
!_

GovernancelImpl.java

|— ProposalManager.java
L— ProposalStatus.java

|— ArbitraryCallManager.java
|— ContractManager.java

|— EmergencyManager.java

|— GovernanceConstants.java




F Y E 0 Balanced DAO | Security Assessment of the Balanced Java Contracts vi.0 | 18 April 2023

Files included in the code review

score/
L— core/
L— loans/
|— collateral/
| L— CollateralDB.java
F— debt/
| L — DebtDB.java
— linkedlist/
| LinkedListDB. java
| L— Node.java
|— positions/

Position.java

T

[T

PositionsDB. java

/

Checks.java

c
t
-
—
[0)]

IdFactory.java
LoansConstants.java
PositionBatch. java
Standing.java

[TTTTT

TokenUtils.java
LoansImpl.java

T

LoansVariables.java

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r
S

eserve/
| — src/
| | I— main/
| avas
| | | L— network/
| | | L— balanced/
| | | L— score/
| | | L— core/
| | | L— reserve/
| | | L ReserveFund.java
— Rewards/
src/
I— main/
L— java/

|

| L — network/

| L— balanced/

| L— score/

| L— core/

| L — rewards/
|

|

|— utils/

| |— BalanceData.java

T




F Y E 0 Balanced DAO | Security Assessment of the Balanced Java Contracts vi.0 | 18 April 2023

Files included in the code review

RewardsConstants.java
| — weight/
| | L— SourceWeightController.java
| — DataSourceDB.java
| — DataSourcelImpl.java
| L RewardsImpl.java
e

09—

I L— network/

| L— balanced/

| L— score/

| L— core/

| L— router/

| L— RouterImpl.java
e

s

n —m————_——_——_——_—

| L— network/

| L— balanced/

| L— score/

| L— core/

| L— stakedlp/

| L — StakedLPImpl.java
i
s

1T 1

n —m————_——_———_———_—

|

| L— network/

| L— balanced/

| L— score/

| L— core/

| L— staking/

| F— db/

| | — Delegation.java
| — DelegationListDB.java
|

|

|

|

|

NodeDB. java

|

|

|

|— utils/
| |— Checks.java
I

|— LinkedListDB. java
L

Constant.java




F Y E 0 Balanced DAO | Security Assessment of the Balanced Java Contracts vi.0 | 18 April 2023

Files included in the code review

UnstakeDetails.java
| | | L— StakingImpl.java
— token-contracts/
| |— BalancedDollar/
| | b= src/
| | | = main/
| | | = davas
| | | | L— network/
| | | | L— balanced/
| | | | L— score/
| | | | L— tokens/
| | | | L— balanceddollar/
| | | | L— BalancedbDollarImpl.java
| | L— pbuild.gradle
| |— BalancedToken/
| | src/
| | | I— main/
| | | = davas
| | | | L— network/
| | | | L— palanced/
| | | | L— score/
| | | | L— tokens/
| | | | L— balancedtoken/
| | | | — BalancedTokenImpl.java
| | | | |— Constants.java
| | | | L— Status.java
| | L— pbuild.gradle
| I— Sicx/
| | src/
| | | I— main/
| | | = davas
| | | | L— network/
| | | | L— balanced/
| | | | L— score/
| | | | L— tokens/
| | | | L— sicx/
| | | | L— SicxImpl.java
| | L— pbuild.gradle
| L— bRaln/
| |— src/
| | F— main/

I | | Y java/
| | | L— network/




FYEO

|— util-contracts/

L Stability/
|— src/

I— main/

I
I
I I
| | | L— java/
I |
I |
I |
I |
I |
| |

Balanced DAO | Security Assessment of the Balanced Java Contracts vi.0 | 18 April 2023

Files included in the code review
balanced/
L— score/
L— tokens/

F— db/
| |— LockedBalance. java
| L— point.java
|— utils/
| L— UnsignedBigInteger.java
|— AbstractBoostedBaln. java
|— BoostedBalnImpl. java
L— Constants.java

L— network/
L— balanced/

L— score/
L— util/
L— stability/
L StabilityImpl.java

Table 1: Scope




F Y E 0 Balanced DAO | Security Assessment of the Balanced Java Contracts vi.0 | 18 April 2023

TECHNICAL ANALYSES AND FINDINGS

During the Security Assessment of the Balanced Java Contracts, we discovered:
e 1finding with HIGH severity rating.
e 3 findings with LOW severity rating.

e 1finding with INFORMATIONAL severity rating.

The following chart displays the findings by severity.

Critical |
Medium |
0 1 2 3

Figure 1: Findings by Severity




F Y E 0 Balanced DAO | Security Assessment of the Balanced Java Contracts vi.0 | 18 April 2023

FINDINGS

The Findings section provides detailed information on each of the findings, including methods of
discovery, explanation of severity determination, recommendations, and applicable references.

The following table provides an overview of the findings.

Finding # Severity Description
FYEO-BL-01 High Reentrancy vulnerability in stakelCX function
FYEO-BL-02 Low Lack of validation for duration limits in Governancelmpl
FYEO-BL-03 Low Negative values are not checked in Governancelmpl
FYEO-BL-04 Low Negative values are not checked in LoansImpl
FYEO-BL-05 Informational Token symbol is not check for duplications

Table 2: Findings Overview

TECHNICAL ANALYSIS

The source code has been manually validated to the extent that the state of the repository allowed. The
validation includes confirming that the code correctly implements the intended functionality.




F Y E 0 Balanced DAO | Security Assessment of the Balanced Java Contracts vi.0 | 18 April 2023

TECHNICAL FINDINGS

GENERAL OBSERVATIONS

It is evident that the go code being reviewed has been crafted with care and attention to detail. The
development team was quick to respond to our feedback and resolved the issues with great
communication and at a rapid pace.

The team’s ability to address these issues quickly was a testament to their dedication to producing high-
quality code.

While there were some areas for improvement, overall, the code was well-structured and reasonably
easy to read.




F Y E 0 Balanced DAO | Security Assessment of the Balanced Java Contracts vi.0 | 18 April 2023

REENTRANCY VULNERABILITY IN STAKEICX FUNCTION

Finding ID: FYEO-BL-01
Severity: High
Status: Remediated

Description

The Sicx token MintTo function calls tokenFallback if the destination address is a contract, so an
attacker can supply input _to of statkeIcx with a malicious contract in which its malicious
tokenFallback function would call stake1Cx again and reenter the function while the totalstake
variable is not yet updated. The attacker therefore can manipulate the daily rate so that it can mint a lot
more sicx than expected.

Proof of Issue

File name: Stakinglmpl.java

Line number: 569-582

Context.call (sicxAddress.get (), "mintTo", to, sicxToMint, data);
TokenTransfer ( to, sicxToMint, sicxToMint + " sICX minted to " + to);

Map<String, BigInteger> userCurrentDelegation =
userDelegationInPercentage.getOrDefault (_ to,
DEFAULT_DELEGATION_LIST) .toMap () ;
Map<String, BigInteger> prepDelegations =
prepDelegationInIcx.getOrDefault (DEFAULT DELEGATION LIST) .toMap();
Map<String, BigInteger> finalDelegation;
if (!userCurrentDelegation.isEmpty()) {
finalDelegation = addUserDelegationToPrepDelegation (prepDelegations,
userCurrentDelegation, addedIcx) ;
} else {
finalDelegation = prepDelegations;
}
BigInteger newTotalStake =
this.totalStake.getOrDefault (BigInteger.ZERO) .add (addedIcx) ;
this.totalStake.set (newTotalStake) ;

File name: Stakinglmpl.java

Line number: 485-501

BigInteger dailyReward =

Context.getBalance (Context.getAddress () ) .subtract (unstakedICX)
.subtract (msgValue.subtract (icxAdded) )
.subtract (icxToClaim.getOrDefault (BigInteger.ZERO) ) ;

// If there is I-Score generated then update the rate

if (dailyReward.compareTo (BigInteger.ZERO) > 0) {
totallLifetimeReward.set (getLifetimeReward () .add (dailyReward)) ;
BigInteger totalStake = getTotalStake();
BigInteger newTotalStake = totalStake.add(dailyReward) ;




F Y E 0 Balanced DAO | Security Assessment of the Balanced Java Contracts vi.0 | 18 April 2023

BigInteger newRate;
if (newTotalStake.equals (BigInteger.ZERO)) {
newRate = ONE EXA;
} else {
BigInteger totalSupply = (BigInteger) Context.call (sicxAddress.get(),
"totalSupply") ;
newRate = newTotalStake.multiply (ONE EXA) .divide (totalSupply) ;
}

rate.set (newRate) ;

Severity and Impact Summary

The attacker is able to mint a lot more sicx than expected; and therefore be able to un-stake more ICX
than deposited.

Recommendation

It is recommended to move the mint call to the end of the function.




F Y E 0 Balanced DAO | Security Assessment of the Balanced Java Contracts vi.0 | 18 April 2023

LACK OF VALIDATION FOR DURATION LIMITS IN GOVERNANCEIMPL

Finding ID: FYEO-BL-02
Severity: Low
Status: Remediated

Description

The min input is checked for a positive value, but max is not checked if >= min.

Proof of Issue

File name: Governancelmpl.java

Line number: 96-101

public void setVoteDurationLimits (BigInteger min, BigInteger max) {
onlyOwnerOrContract () ;
Context.require (min.compareTo (BigInteger.ONE) >= 0, "Minimum vote duration has
to be above 1");
minVoteDuration.set (min)
maxVoteDuration.set (max)

’
’

Severity and Impact Summary

This can lead to incorrect vote duration.

Recommendation

It’s recommended to ensure that max > min.




F Y E 0 Balanced DAO | Security Assessment of the Balanced Java Contracts vi.0 | 18 April 2023

NEGATIVE VALUES ARE NOT CHECKED IN GOVERNANCEIMPL

Finding ID: FYEO-BL-03
Severity: Low
Status: Remediated

Description

Both _lockingRatio and _liquidationRatio are checked if > in the loan contract, but _debtCeiling is not
checked if positive or not.

Proof of Issue

File name: Governancelmpl.java

Line number: 460-476

public void addCollateral (Address token address, boolean active, String peg,
BigInteger lockingRatio,
BigInteger liquidationRatio, BigInteger debtCeiling)
{
Address loansAddress = ContractManager.get ("loans");
Context.call (loansAddress, "addAsset", token address, active, true);

String symbol = Context.call(String.class, token address, "symbol");

Address balancedOracleAddress = ContractManager.get ("balancedOracle") ;
Context.call (balancedOracleAddress, "setPeg", symbol, peq):;
BigInteger price = Context.call (BigInteger.class, balancedOracleAddress,
"getPriceInLoop", symbol);
Context.require (price.compareTo (BigInteger.ZERO) > O,
"Balanced oracle return a invalid icx price for " + symbol + "/"™ +

_peg);

Context.call (loansAddress, "setDebtCeiling", symbol, debtCeiling);
_setLockingRatio (symbol, lockingRatio);
_setliquidationRatio (symbol, liquidationRatio);

Severity and Impact Summary

This can lead to incorrect calculations of the loans.

Recommendation

It's recommended to ensure that the numbers are positive.




F Y E 0 Balanced DAO | Security Assessment of the Balanced Java Contracts vi.0 | 18 April 2023

NEGATIVE VALUES ARE NOT CHECKED IN LOANSIMPL

Finding ID: FYEO-BL-04
Severity: Low
Status: Remediated

Description

The fees, points, and minimum are not checked if positive or not.

Proof of Issue

File name: Loanslmpl.java

Line number: 790-833

@External
public void setOriginationFee (BigInteger fee) {
onlyGovernance () ;
originationFee.set ( fee);

}

@External

public void setRedemptionFee (BigInteger fee) {
onlyGovernance () ;
redemptionFee.set ( fee);

}

@External (readonly = true)
public BigInteger getRedemptionFee () {
return redemptionFee.get () ;

}

@External

public void setRedemptionDaoFee (BigInteger fee) {
onlyGovernance () ;
redemptionDaoFee.set ( fee);

}

@External (readonly = true)
public BigInteger getRedemptionDaoFee () {
return redemptionDaoFee.getOrDefault (BigInteger.ZERO) ;

}

@External

public void setRetirementBonus (BigInteger points) {
onlyGovernance () ;
retirementBonus.set (_points);

}

@External

public void setLiquidationReward (BigInteger points) {
onlyGovernance () ;
liquidationReward.set (_points);




Balanced DAO | Security Assessment of the Balanced Java Contracts vi.0 | 18 April 2023

FYEO

}

{

@External
public void setNewLoanMinimum(BigInteger minimum)

onlyGovernance () ;
newLoanMinimum.set (_ minimum) ;

Severity and Impact Summary

This can lead to incorrect calculation of the loans.

Recommendation
It's recommended to ensure that the numbers are positive.




F Y E 0 Balanced DAO | Security Assessment of the Balanced Java Contracts vi.0 | 18 April 2023

TOKEN SYMBOL IS NOT CHECK FOR DUPLICATIONS

Finding ID: FYEO-BL-05
Severity: Informational
Status: Remediated

Description

The token symbol is not checked if existed when new collateral is added in addasset.

Proof of Issue

File name: Loanslmpl.java

Line number: 209-216

public void addAsset (Address token address, boolean active, boolean collateral)
onlyGovernance () ;
if ( _collateral) {
String symbol = TokenUtils.symbol ( token address);
CollateralDB.addCollateral ( token address, symbol);
AssetAdded( token address, symbol, collateral);

{

Severity and Impact Summary

Although this function is only called by the governance, it is safer to check for symbol supplications.

Recommendation

Check if the token symbol exists in CollateralDB.




F Y E 0 Balanced DAO | Security Assessment of the Balanced Java Contracts vi.0 | 18 April 2023

OUR PROCESS
METHODOLOGY

FYEO Inc. uses the following high-level methodology when approaching engagements. They are broken
up into the following phases.

Kickoff Review

Figure 2: Methodology Flow
KICKOFF

The project is kicked off as the sales process has concluded. We typically set up a kickoff meeting
where project stakeholders are gathered to discuss the project as well as the responsibilities of
participants. During this meeting we verify the scope of the engagement and discuss the project
activities. It’s an opportunity for both sides to ask questions and get to know each other. By the end of
the kickoff there is an understanding of the following:

e Designated points of contact

e Communication methods and frequency

e Shared documentation

e Code and/or any other artifacts necessary for project success

e Follow-up meeting schedule, such as a technical walkthrough

Understanding of timeline and duration

RAMP-UP

Ramp-up consists of the activities necessary to gain proficiency on the project. This can include the
steps needed for familiarity with the codebase or technological innovation utilized. This may include, but
is not limited to:

e Reviewing previous work in the area including academic papers

e Reviewing programming language constructs for specific languages




F Y E 0 Balanced DAO | Security Assessment of the Balanced Java Contracts vi.0 | 18 April 2023

e Researching common flaws and recent technological advancements
REVIEW

The review phase is where most of the work on the engagement is completed. This is the phase where
we analyze the project for flaws and issues that impact the security posture. Depending on the project
this may include an analysis of the architecture, a review of the code, and a specification matching to
match the architecture to the implemented code.

In this code audit, we performed the following tasks:

1. Security analysis and architecture review of the original protocol

2. Review of the code written for the project

3. Compliance of the code with the provided technical documentation
The review for this project was performed using manual methods and utilizing the experience of the
reviewer. No dynamic testing was performed, only the use of custom-built scripts and tools were used
to assist the reviewer during the testing. We discuss our methodology in more detail in the following

sections.
CODE SAFETY
We analyzed the provided code, checking for issues related to the following categories:
e General code safety and susceptibility to known issues
e Poor coding practices and unsafe behavior
e Leakage of secrets or other sensitive data through memory mismanagement
e Susceptibility to misuse and system errors
e Error management and logging

This list is general and not comprehensive, meant only to give an understanding of the issues we are
looking for.

TECHNICAL SPECIFICATION MATCHING

We analyzed the provided documentation and checked that the code matches the specification. We
checked for things such as:

e Proper implementation of the documented protocol phases




F Y E 0 Balanced DAO | Security Assessment of the Balanced Java Contracts vi.0 | 18 April 2023

e Proper error handling

e Adherence to the protocol logical description
REPORTING

FYEO Inc. delivers a draft report that contains an executive summary, technical details, and observations
about the project.

The executive summary contains an overview of the engagement including the number of findings as
well as a statement about our general risk assessment of the project. We may conclude that the overall
risk is low but depending on what was assessed we may conclude that more scrutiny of the project is
needed.

We report security issues identified, as well as informational findings for improvement, categorized by
the following labels:

e Critical
e High
e Medium
e Low

e Informational

The technical details are aimed more at developers, describing the issues, the severity ranking and
recommendations for mitigation.

As we perform the audit, we may identify issues that aren’t security related, but are general best
practices and steps that can be taken to lower the attack surface of the project. We will call those out as
we encounter them and as time permits.

As an optional step, we can agree on the creation of a public report that can be shared and distributed
with a larger audience.

VERIFY

After the preliminary findings have been delivered, this could be in the form of the approved
communication channel or delivery of the draft report, we will verify any fixes within a window of time
specified in the project. After the fixes have been verified, we will change the status of the finding in the
report from open to remediated.

The output of this phase will be a final report with any mitigated findings noted.




F Y E 0 Balanced DAO | Security Assessment of the Balanced Java Contracts vi.0 | 18 April 2023

ADDITIONAL NOTE

It is important to note that, although we did our best in our analysis, no code audit or assessment is a
guarantee of the absence of flaws. Our effort was constrained by resource and time limits along with the
scope of the agreement.

While assessing the severity of the findings, we considered the impact, ease of exploitability, and the
probability of attack. This is a solid baseline for severity determination.

THE CLASSIFICATION OF VULNERABILITIES

Security vulnerabilities and areas for improvement are weighted into one of several categories using, but
is not limited to, the criteria listed below:

Critical — vulnerability will lead to a loss of protected assets

e This is a vulnerability that would lead to immediate loss of protected assets
e The complexity to exploit is low

e The probability of exploit is high

High - vulnerability has potential to lead to a loss of protected assets

e All discrepancies found where there is a security claim made in the documentation that cannot
be found in the code

e All mismatches from the stated and actual functionality
e Unprotected key material

e \Weak encryption of keys

e Badly generated key materials

e Txn signatures not verified

e Spending of funds through logic errors

e Calculation errors overflows and underflows

Medium - vulnerability hampers the uptime of the system or can lead to other problems

e Insecure calls to third party libraries

e Use of untested or nonstandard or non-peer-reviewed crypto functions




F Y E 0 Balanced DAO | Security Assessment of the Balanced Java Contracts vi.0 | 18 April 2023

e Program crashes, leaves core dumps or writes sensitive data to log files

Low — vulnerability has a security impact but does not directly affect the protected assets

e Overly complex functions

e Unchecked return values from 3rd party libraries that could alter the execution flow

Informational

e General recommendations

23




