

© Coinspect 2024 1 / 44

xCall
Smart Contract Audit

Version: v241106 Prepared for: Icon Foundation October 2024

Security Assessment

1. Executive Summary
2. Summary of Findings

2.2 Finding where caution is advised
2.3 Solved issues & recommendations

3. Scope
4. Assessment

4.1 Security assumptions
4.2 Decentralization
4.3 Testing
4.4 Code quality

5. Detailed Findings

© Coinspect 2024 2 / 44

XCL�001 � Anyone can prevent sources and
destinations updates on the xCall Manager contract
XCL�002 � Lack of privilege segregation
XCL�003 � Asset manager contract returns
information for non-existing token addresses
XCL�004 � Anyone can write token data for arbitrary
tokens
XCL�005 � Unsafe integer casting
XCL�006 � Anyone can trigger rollbacks without
authorization
XCL�007 � Anyone can drain asset manager token
holdings
PoC �Proof-of-Concept)
XCL�008 � Insufficient unit tests and lack of
integration tests
XCL�009 � MessageRequest in reply could be sent to
wrong destination
XCL�010 � Attempting to convert time diff to seconds
XCL�011 � Zero value deposits allowed
XCL�012 � xCall contract network not computed
inside the contract
XCL�013 � Using the same error for multiple issues
hinders testing
XCL�014 � Unreachable code
XCL�015 � Deposit function does not enforce
destination address
XCL�016 � Using old Stellar Soroban SDK version

6. Disclaimer

© Coinspect 2024 3 / 44

1. Executive Summary
In September 2024, ICON Foundation engaged Coinspect to perform a smart
contract audit of the xCall cross-chain message platform implementation on
Stellar Soroban. Also, the project encompassed the review of additional Soroban
smart contracts that use the xCall contracts to send cross-chain messages. The
objective of the project was to evaluate the security of the different
implementations.

The ICON xCall project is a protocol that enables cross-chain communication,
allowing blockchains to exchange data and assets.

Solved Caution Advised Resolution Pending

High
2

High
1

High
0

Medium
1

Medium
1

Medium
0

Low
2

Low
1

Low
0

No Risk
7

No Risk
1

No Risk
0

Total

12
Total

4
Total

0

The assessment identified three high-risk vulnerabilities that could allow
unauthorized draining of the asset manager's token holdings and the triggering of
rollbacks without prior authorization. Additionally, Coinspect found that anyone
could block updates to source and destination connections in the xCall manager
contract.

Coinspect also uncovered two medium-risk issues: one related to insufficient
testing, and the other due to a lack of validation when processing a

https://icon.foundation/
https://coinspect.com/

© Coinspect 2024 4 / 44

MessageRequest in a reply.

Lastly, the review uncovered three low-risk issues: the lack of privilege
segregation in the connection contract, the ability to write data for arbitrary
tokens, and the return of empty information rather than an error for non-existent
tokens in the Asset Manager contract.

© Coinspect 2024 5 / 44

2. Summary of Findings
This section provides a concise overview of all the findings in the report grouped
by remediation status and sorted by estimated total risk.

2.2 Finding where caution is advised

Issues with risk in this list have been addressed to some extent but not fully
mitigated. Any future changes to the codebase should be carefully evaluated to
avoid exacerbating these issues or increasing their probability.

Findings with a risk of None pose no threat, but document an implicit assumption
which must be taken into account. Once acknowledged, these are considered
solved.

Id Title Risk

XCL�001 Anyone can prevent sources and destinations updates
on the xCall Manager contract High

XCL�009 MessageRequest in reply could be sent to wrong
destination Medium

XCL�002 Lack of privilege segregation Low

XCL�011 Zero value deposits allowed None

2.3 Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could
improve the long-term security posture of the project.

Id Title Risk

© Coinspect 2024 6 / 44

XCL�006 Anyone can trigger rollbacks without authorization High

XCL�007 Anyone can drain asset manager token holdings High

XCL�008 Insufficient unit tests and lack of integration tests Medium

XCL�003 Asset manager contract returns information for non-
existing token addresses Low

XCL�004 Anyone can write token data for arbitrary tokens Low

XCL�005 Unsafe integer casting None

XCL�010 Attempting to convert time diff to seconds None

XCL�012 xCall contract network not computed inside the
contract None

XCL�013 Using the same error for multiple issues hinders testing None

XCL�014 Unreachable code None

XCL�015 Deposit function does not enforce destination address None

XCL�016 Using old Stellar Soroban SDK version None

© Coinspect 2024 7 / 44

3. Scope
The scope was defined to include the following repositories:

https://github.com/icon-project/xcall-multi at commit
abf40ee78b66f2867ea4d3e964e24fcdc6dbbf4b. Specifically, the team focused on
the xCall core contract and the connection contract.
https://github.com/balancednetwork/balanced-soroban-contracts at commit
bc20b05d7f94f926dea2c338cc0661e0befa37eb.

© Coinspect 2024 8 / 44

4. Assessment
xCall offers a standard interface for making cross-chain calls between different
blockchain networks, consisting of three main components:

xCall Core Contracts� These are the official contracts that dApps interact with
to send and receive cross-chain messages.
Connections� Also referred to as sources, destinations, or protocols, these
components relay messages between source and destination chains. When
sending a message, dApps can choose specific connections or use the default.
The xCall contract routes the messages based on these connections.
dApps� The senders and receivers of cross-chain messages. The contracts
fitting this category reviewed during this project are the Asset Manager,
Balanced Dollar, and xCall Manager.

As outlined in xCall's documentation, the security of the platform depends on the
integrity of its underlying connections. It is the dApp's responsibility to validate
the source connection/protocol during the handleCallMessage process. Any
address can send messages to xCall, and they are assumed valid by default, but
the dApp can discard them if protocols are found to be invalid. Given this, ICON
must address all relevant security considerations to help dApps developers to
avoid accepting malicious or spoofed messages. Additionally, providing a dApp
contract template could ensure dApp owners can leverage existing security
features.

xCall users face two costs when sending messages: xCall platform fees and a per-
connection fee, which is determined by the connection administrator. Receivers
only need to pay the chain's transaction fee to execute the message.

It's important to note that these fees are uncapped, allowing administrators to
raise them without limit at any time. However, Soroban's token transfer
authorization scheme prevents front-running attacks to increase fees, as users
must explicitly approve and sign the fee transfer. If fees increase, the transaction
simply fails. Nonetheless, Coinspect recommends setting a hard cap on these fees
to prevent any automatic system from automatically paying extremely high fees.

Finally, due to the time constraints of this engagement and the absence of
integration tests, Coinspect was unable to perform dynamic testing on the various
components involved in the message exchange process. As a result, Coinspect
recommends an additional review focused on these interactions and their error-
handling mechanisms.

© Coinspect 2024 9 / 44

4.1 Security assumptions

Coinspect consultants conducted the assessment based on the following
assumptions:

The ICON Foundation operates with good intent and does not engage in
malicious behavior.
Administrative control of the contracts is governed by a multisig setup.
dApps trust the connections (protocols), as malicious connections can spoof
from addresses and replay messages. The software components used by
connection operators to relay messages operate correctly.
Off-chain code, which was not part of this assessment, manages the extension
of contract instance storage. Some reviewed contracts handle instance and
persistent storage extension in their public-facing functions, while others do
not.

4.2 Decentralization

The project exhibits a significant level of centralization for several reasons:

All contracts are upgradeable.
The xCall team has the ability to modify the core contract code, adjust
protocol fees, and change the default connection.
The default centralized connection contract is intended to be controlled by
ICON.

Additionally, it should be noted that connections face no penalties for failing to
deliver messages or for delivering incorrect information. Due to the protocol's
design, if a message relies on multiple connections, it can be halted if any one of
the connections fails to deliver it.

4.3 Testing

As highlighted in XCL-008, in addition to the absence of an integration test suite,
Coinspect observed that the current unit tests are insufficient, as they fail to
cover essential functionality of the core contracts. Furthermore, the unit testing
suite would benefit from more adversarial tests.

The code coverage for each contract in scope is as follows:

xCall: 77.62% coverage, 711/916 lines covered
centralized-connection: 80.92% coverage, 123/152 lines covered

© Coinspect 2024 10 / 44

asset_manager: 61.36% coverage, 405/660 lines covered
balanced_doller: 53.35% coverage, 342/641 lines covered
xcall_manager: 52.38% coverage, 275/525 lines covered

Coinspect strongly recommends enhancing the overall testing across the project.

4.4 Code quality

Overall, aside from the informational issue regarding unreachable code (XCL-014),
Coinspect found the code generally clear and easy to follow. However, there is
potential for improving its quality. Adding documentation to each core function to
briefly explain the functionality, inputs, and outputs in a NatSpec-like format
would be beneficial.

Furthermore, the technical documentation could be enhanced by offering more
detailed explanations of the flow for a message request, execution, reply and
rollback process.

© Coinspect 2024 11 / 44

5. Detailed Findings

XCL�001
Anyone can prevent sources and
destinations updates on the xCall Manager
contract

Status

Caution Advised

Resolution

Partially Fixed

Risk
High

Impact
High
Likelihood
High

Location

balanced-soroban-contracts/contracts/xcall_manager/src/contract.rs:68

Description

Anyone can cause a Denial-of-Service �DoS� to the contract by filling up its
instance storage. This could prevent ICON governance from adding new
source and destination protocols. Additionally, an adversary could block the
handle_call_message function from executing correctly by front-running each

© Coinspect 2024 12 / 44

call with a remove_action call, which would remove the white-listed action,
causing handle_call_message to throw a NotWhiteListed error.

This issue arises due to two vulnerabilities:

 Lack of authorization enforcement on the white_list_actions function.
 White-listed actions being stored in the contract's instance storage,

which is limited to 64kb (resource limits reference). Once the storage
limit is reached, no additional data can be stored unless existing entries
are removed.

Below, note that the white_list_actions function can be called by anyone:

pub fn white_list_actions(e: Env, action: Bytes) {
 let actions = WhiteListActions::new(DataKey::WhiteListedActions);
 actions.add(&e, action);
}

And the add function, which stores the value in instance storage:

impl WhiteListActions {
 pub fn new(key: DataKey) -> Self {
 Self { key }
 }

pub fn add(&self, env: &Env, value: Bytes) {
 let mut list = self.get(env);
 list.push_back(value);
 env.storage().instance().set(&self.key, &list);
 }
}

Recommendation

Implement authorization checks on the white_list_actions function.

Store allow-listed actions in persistent storage instead. Consider storing
sources and destinations and any other information of variable length in
persistent storage as well.

Status

Partially fixed on commit 72f86192d51baf53af86d1eb7a76637059d838ca.
The white_list_actions function now enforces access control; however, there
remains a risk of DoS due to instance storage exhaustion if an excessive
number of actions are stored.

https://developers.stellar.org/docs/reference/resource-limits-fees

© Coinspect 2024 13 / 44

XCL�002
Lack of privilege segregation

Status

Caution Advised

Resolution

Acknowledged

Risk
Low

Impact
Medium
Likelihood
Low

Location

xcall-multi/contracts/soroban/contracts/centralized-
connection/src/contract.rs:87

Description

The connection contract currently defines two distinct roles or addresses
authorized to interact with it: the upgrade authority, responsible for upgrading
the contract's functionality, and the admin, who is permitted to set and collect
fees as well as to support the message exchange operations. In the event of
the admin's credentials, which would likely be stored in a server, being
compromised, adversaries could not only disrupt the connection's operations
but also steal the accumulated fees.

Here's an example of the recv_message function, which enforces the admin's
authorization:

 pub fn recv_message(
 env: Env,
 src_network: String,
 conn_sn: u128,

© Coinspect 2024 14 / 44

 msg: Bytes,
) -> Result<(), ContractError> {
 helpers::ensure_admin(&env)?;

Recommendation

Assign role responsibilities considering the type of operations and whether
the private keys need to be stored in an off-chain software component.

Status

Acknowledged. The development team indicated that the Xcall specification
assigns the same privilege for centralized connections across all other chains,
with plans to consider adjustments in the future.

© Coinspect 2024 15 / 44

XCL�003
Asset manager contract returns
information for non-existing token
addresses

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

balanced-soroban-contracts/contracts/asset_manager/src/contract.rs:96

Description

The asset manager contract returns an empty, yet valid, TokenData object
when a query is made for a non-existing token address. This behavior could
mislead consumers of this information into believing that the token address is
stored in the contract and taking actions based on that assumption.

The issue arises because the read_token_data function returns a default
TokenData object if the token_address is not found in the contract. This
function is invoked by the publicly accessible get_rate_limit function.

pub fn read_token_data(env: &Env, token_address: Address) -> TokenData
{
 let default = TokenData { percentage: 0, period: 0, last_update: 0,

© Coinspect 2024 16 / 44

current_limit: 0 };
 let key = DataKey::TokenData(token_address);
 env.storage().persistent().get(&key).unwrap_or(default)
}

Recommendation

Instead of returning an empty response, throw an error when attempting to
retrieve data for a non-existing token.

Status

Fixed on commit 72f86192d51baf53af86d1eb7a76637059d838ca. The
read_token_data function is no longer public, and the get_rate_limit function
now checks if the token exists. Note however read_token_data still returns
empty information.

© Coinspect 2024 17 / 44

XCL�004
Anyone can write token data for arbitrary
tokens

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

balanced-soroban-contracts/contracts/asset_manager/src/contract.rs:123

Description

Anyone can cause the contract to update the last_update field for an arbitrary
token address due to the absence of authorization enforcement in the public
verify_withdraw function, shown below. Furthermore, since there is no check
to verify whether the token was previously stored, combined with the issue
highlighted in XCL-003, this can also be done for non-existing tokens.

pub fn verify_withdraw(env: Env, token: Address, amount: u128) ->
Result<bool, ContractError> {
 let balance = Self::get_token_balance(&env, token.clone());
 let limit = Self::calculate_limit(&env, balance, token.clone())?;
 if balance - amount < limit {
 panic_with_error!(&env, ContractError::ExceedsWithdrawLimit);
 };
 let mut data: TokenData = read_token_data(&env, token.clone());
 data.current_limit = limit as u64;

© Coinspect 2024 18 / 44

 data.last_update = env.ledger().timestamp();
 write_token_data(&env, token, data);
 Ok(true)
}

Note that for non-existing tokens, the limit property would still default to
zero.

A similar situation occurs with the reset_limit function, which it only stores
the token address key.

pub fn reset_limit(env: Env, token: Address) {
 let balance = Self::get_token_balance(&env, token.clone());
 let mut data: TokenData = read_token_data(&env, token.clone());
 data.current_limit = (balance * data.percentage as u128 / POINTS)
as u64;
 write_token_data(&env, token, data);
}

Recommendation

Ensure that the token address exists in storage before proceeding.
Additionally, consider implementing an access control mechanism unless the
current design intentionally allows unrestricted access.

Status

Fixed in commit a07bcd707fe9ae6b55332a12e1d6049c89aad4d5. The
read_token_data function no longer returns empty data for non-existing
tokens. Additionally, the reset_limit function now enforces authentication
from the admin.

© Coinspect 2024 19 / 44

XCL�005
Unsafe integer casting

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

balanced-soroban-contracts/contracts/asset_manager/src/contract.rs:322

balanced-soroban-
contracts/contracts/balanced_doller/src/balanced_dollar.rs:34

Description

The transfer_token_to function casts the u128 amount variable to i128 without
considering potential overflows. If the u128 value is greater than the
maximum value of i128, the cast will result in a wrapped value, resulting in a
negative number.

fn transfer_token_to(e: &Env, from: Address, token: Address, to:
Address, amount: u128) { //ok
 let token_client = token::Client::new(e, &token);
 token_client.transfer(&from, &to, &(amount as i128));
}

A similar situation occurs in the _cross_transfer function from the Balanced
Dollar contract:

© Coinspect 2024 20 / 44

_burn(&e, from.clone(), amount as i128);

Note however that the standard token implementation in Soroban does not
allow negative values, and therefore this issue is deemed as info. Keep in mind
that using non-standard token implementations allowing negative transfers
would allow exploitation of this problem.

Recommendation

Safely handle amount values higher than the maximum value of i128.

Review and fix the rest of the implementations where this problem was
introduced.

Status

Fixed on commit 72f86192d51baf53af86d1eb7a76637059d838ca. The
transfer_token_to and _cross_transfer functions now enforce that the amount
does not exceed i128::MAX.

© Coinspect 2024 21 / 44

XCL�006
Anyone can trigger rollbacks without
authorization

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

xcall-
multi/contracts/soroban/contracts/xcall/src/handle_message.rs:161

Description

Anyone can force a ResponseFailure for a any CallMessageWithRollback, which
allows executing the rollback. The impact depends on the dapp handling the
rollback. For instance, a bridge dapp would allow an adversary to redeem the
deposited funds on both chains. This is enabled by the lack of authentication
enforcement on the handle_error function, which allows an adversary to pass
any arbitrary source address to meet the rollback's protocols requirements.

Once the rollback is enabled, they can also execute it since the
execute_rollback function does not require authentication.

Anyone can execute the public handle_error function while providing a valid
source address, which is not authenticated.

© Coinspect 2024 22 / 44

pub fn handle_error(env: Env, sender: Address, sequence_no: u128) ->
Result<(), ContractError> {
 handle_message::handle_error(&env, sender, sequence_no)
}

Which executes the handle_error function from the handle_message crate.

pub fn handle_error(env: &Env, sender: Address, sequence_no: u128) ->
Result<(), ContractError> {
 let cs_message_result = CSMessageResult::new(
 sequence_no,
 CSResponseType::CSResponseFailure,
 Bytes::new(&env),
);
 handle_result(&env, &sender, cs_message_result.encode(&env))
}

Note that this does not prevent valid sources from reporting successful
responses. However, off-chain systems processing a response failure without
looking for further results could be tricked into processing a fake response.

Recommendation

Enforce authentication on the handle_error function.

Status

Fixed on commit e76f07b60a739b8d1e19d052865acc86f38601c2. The
handle_error function now enforces authentication of the sender parameter.

© Coinspect 2024 23 / 44

XCL�007
Anyone can drain asset manager token
holdings

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

balanced-soroban-contracts/contracts/asset_manager/src/contract.rs
303:319

Description

Anyone can withdraw any token held by the contract to an arbitrary address.
This is due to the withdraw function displayed below accessible by anyone,
which allows providing the contract's address as the from parameter to

pub fn withdraw(
 e: &Env,
 from: Address,
 token: Address,
 to: Address,
 amount: u128,
) -> Result<(), ContractError> {
 if amount <= 0 {
 return Err(ContractError::AmountIsLessThanMinimumAmount);
 }

© Coinspect 2024 24 / 44

let verified = Self::verify_withdraw(e.clone(), token.clone(),
amount)?;
 if verified {
 Self::transfer_token_to(e, from, token, to, amount);
 }
 Ok(())
}

Recommendation

Remove the pub modifier from the function declaration.

Additionally, consider relocating all non-public functions to a separate module
outside of the contract. This will ensure that internal functions are not
accidentally exposed to the public.

Status

Fixed on commit 72f86192d51baf53af86d1eb7a76637059d838ca. The
withdraw function is no longer public.

PoC �Proof-of-Concept)

Coinspect confirmed this vulnerability through the test below, which allows
tokens to be transferred from the contract to an arbitrary address via the
withdraw function, without triggering any AuthorizedInvocation.

#[test]
fn test_withdraw() {
 let ctx = TestContext::default();
 let client = AssetManagerClient::new(&ctx.env, &ctx.registry);
 ctx.init_context(&client);

client.configure_rate_limit(&ctx.token, &300, &300);

let bnusd_amount = 100000u128;
 let token_client = token::Client::new(&ctx.env, &ctx.token);
 let stellar_asset_client: token::StellarAssetClient =
 token::StellarAssetClient::new(&ctx.env, &ctx.token);
 stellar_asset_client.mint(&client.address, &((bnusd_amount * 2) as
i128));

let to_address = Address::generate(&ctx.env);

© Coinspect 2024 25 / 44

ctx.env.mock_all_auths();
 client.withdraw(&client.address, &ctx.token, &to_address,
&bnusd_amount);
 // std::println!("AUTHORIZATION {:?} ----", ctx.env.auths()); -->
This is empty

assert_eq!(token_client.balance(&to_address), bnusd_amount as i128);

assert_eq!(
 ctx.env.auths(),
 std::vec![
 // NO AUTHS REQUIRED
]
);

}

To execute it locally, place this snippet in the asset_manager_test.rs file and
execute the following command:

tests::asset_manager_test::test_withdraw -- --nocapture

© Coinspect 2024 26 / 44

XCL�008
Insufficient unit tests and lack of
integration tests

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
Medium
Likelihood
Medium

Description

Coinspect did not identify an integration testing suite covering all contracts
within scope. Since proper source validation and authorization are critical for
this platform, the absence of integration tests may obscure issues stemming
from the interaction between these components.

Automated tests, in particular, serve as a crucial safeguard, ensuring that the
source code functions as expected and is shielded from unintended side
effects or vulnerabilities.

The xCall contract's code coverage is currently at 77%, which may overlook
important functionality. For example, Coinspect identified that there are no
unit tests for the execute_call and handle_error functions, which could have
exposed issue XCL-006.

Recommendation

© Coinspect 2024 27 / 44

Add unit tests for the handle_error and execute_call functions in the xCall
implementation. Improve test code coverage for the xCall contract. Add
adversarial tests to account for scenarios such as handling a request from
multiple sources with an unexpected message for a given sequence number,
or attempting to execute data that does not match the stored SHA�256 hash
of the request.

Implement integration tests to cover the interaction between the different
components supporting end-to-end message passing. Include adversarial
integration tests to simulate potential attack scenarios.

Status

Fixed. The development team added greatly improved the xCall unit testing
suite, found on commit de9a2931d0a772413e2c4b1a4bf95abdc7b66207.
Additionally, they provided integration tests at
https://github.com/bcsainju/balanced-stellar-deploy, although these do not
cover malicious case scenarios. On the other hand, they decided not to write
additional test for the balanced contracts.

https://github.com/bcsainju/balanced-stellar-deploy

© Coinspect 2024 28 / 44

XCL�009
MessageRequest in reply could be sent to
wrong destination

Status

Caution Advised

Resolution

Acknowledged

Risk
Medium

Impact
Medium
Likelihood
Medium

Description

The handle_reply function processes a MessageRequest contained within a
CSMessageResult. However, it does not validate whether the reply's destination
(to) matches the address that initiated the original request. This omission
allows the MessageRequest to be sent to a different destination.

In the code snippet provided, the handle_reply function verifies that the
source of the reply (reply.from) matches the original destination address, but
it does not ensure the reply's destination is correct.

pub fn handle_reply(
 env: &Env,
 rollback: &Rollback,
 reply: &mut CSMessageRequest,
) -> Result<(), ContractError> {
 if rollback.to().nid(&env) != reply.from().nid(&env) {
 return Err(ContractError::InvalidReplyReceived);
 }
 let req_id = storage::increment_last_request_id(&env);

© Coinspect 2024 29 / 44

 event::call_message(
 &env,
 reply.from().to_string(),
 reply.to().clone(),
 reply.sequence_no(),
 req_id,
 reply.data().clone(),
);

 reply.hash_data(&env);
 reply.set_protocols(rollback.protocols.clone());
 storage::store_proxy_request(&env, req_id, &reply);

 Ok(())
}

Since the Soroban implementation under review does not insert such requests
in a result during the execute_message call, Coinspect could not identify a clear
method of exploiting this issue.

Recommendation

Evaluate whether this behavior is allowed on the platform. If not, ensure that
the reply's destination address is validated to match the one that sent the
initial MessageRequest.

Status

Acknowledged. The development team states that this behavior is allowed
and replies can be sent to other destination contracts.

© Coinspect 2024 30 / 44

XCL�010
Attempting to convert time diff to seconds

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

balanced-soroban-contracts/contracts/asset_manager/src/contract.rs:152

Description

When computing the time_diff in the calculate_limit function, the resulting
difference of two timestamps is divided by 1000 in an attempt to convert it
from miliseconds to seconds. Note however that timestamps in Soroban are
already expressed in seconds.

let time_diff = (&env.ledger().timestamp() - last_update) / 1000;

This problem was not detected during the testing phase as the
test_configure_rate_limit_panic test uses the get_withdraw_limit and
verify_withdraw outputs to verify this calculation, both of which use the
calculate_limit function.

© Coinspect 2024 31 / 44

Recommendation

Express the time_diff in seconds instead.

Status

Fixed on commit 72f86192d51baf53af86d1eb7a76637059d838ca. The
time diff is now expressed in seconds by removing the division from the
formula.

© Coinspect 2024 32 / 44

XCL�011
Zero value deposits allowed

Status

Caution Advised

Resolution

Open

Risk
None

Impact
Recommendation
Likelihood
_

Location

balanced-soroban-contracts/contracts/asset_manager/src/contract.rs:192

Description

The send_deposit_message function in the asset manager contract allows zero-
value deposits, as there are no restrictions in place to prevent this.

While this is not a security vulnerability, it does present inconsistent behavior
when compared to cross-chain withdrawals, which do not permit zero-value
withdrawals. The snippet below was obtained from the same contract.

pub fn withdraw(
 e: &Env,
 from: Address,
 token: Address,
 to: Address,
 amount: u128,
) -> Result<(), ContractError> {
 if amount <= 0 {

© Coinspect 2024 33 / 44

 return Err(ContractError::AmountIsLessThanMinimumAmount);
 }

Recommendation

Consider adding a restriction to prevent zero-value transfers.

Status

Fixed on commit 72f86192d51baf53af86d1eb7a76637059d838ca. The
deposit function, which calls send_deposit_message ensures that the deposited
amount is higher than zero.

© Coinspect 2024 34 / 44

XCL�012
xCall contract network not computed
inside the contract

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

balanced-soroban-contracts/contracts/asset_manager/src/contract.rs:282

Description

Currently, the xcall_network_address value (the NetworkAddress for the xCall
contract) is set via the config parameter passed to the initialize function.
Since this value is derived from the xCall contract address (config.xcall) and
the network ID, including it as a separate parameter introduces an
unnecessary risk. An unauthorized modification of this value will enable
spoofing of the from address in the handle_call_message function.

The xCall contract's NetworkAddress is included in the initialize function as
part of the config:

pub fn initialize(env: Env, registry: Address, admin: Address, config:
ConfigData) {

© Coinspect 2024 35 / 44

Which defines this parameter as xcall_network_address:

pub struct ConfigData {
 ...
 pub xcall_network_address: String,
 ...
}

Recommendation

Derive the xcall_network_address directly from the xcall address and the
network ID.

Status

Fixed in commit f81ebcf16bda5d6c6bc3a39856ff10ffed5b8074. The xCall
network address is now obtained from the xCall contract via the
get_network_address function.

© Coinspect 2024 36 / 44

XCL�013
Using the same error for multiple issues
hinders testing

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

xcall-multi/contracts/soroban/contracts/xcall/src/handle_message.rs:44

Description

The handle_request function returns the same error for two distinct issues. As
a result, if one of these validations fails, tests may obscure the actual cause,
as they cannot differentiate which validation triggered the error.

 if src_net != from_net {
 return Err(ContractError::ProtocolsMismatch);
 }
 let source = sender.to_string();
 let source_valid = is_valid_source(&env, &source, src_net,
&req.protocols())?;
 if !source_valid {
 return Err(ContractError::ProtocolsMismatch);
 }

© Coinspect 2024 37 / 44

Recommendation

Consider using different errors for different causes.

Status

Fixed on commit de9a2931d0a772413e2c4b1a4bf95abdc7b66207. The
code now throws the NetworkIdMismatch error when the networks differ.

© Coinspect 2024 38 / 44

XCL�014
Unreachable code

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

contracts/xcall_manager/src/contract.rs:152

Description

Unreachable code makes smart contracts harder to understand and maintain.
In the example below, the instructions in the first if block prevent the second
if block from executing.

if !Self::verify_protocols(e.clone(), protocols.clone())? {
 return Err(ContractError::ProtocolMismatch);
};

let method = ConfigureProtocols::get_method(&e.clone(), data.clone());

let sources = read_sources(&e);
if !Self::verify_protocols_unordered(protocols.clone(),
sources).unwrap() {
 if method != String::from_str(&e.clone(), CONFIGURE_PROTOCOLS_NAME)
{
 return Err(ContractError::UnknownMessageType);
 }

© Coinspect 2024 39 / 44

 Self::verify_protocol_recovery(&e, protocols)?;
}

The verify_protocols function runs the same logic and receives the same
parameters as the second if block, making the latter unreachable.

pub fn verify_protocols(e: Env, protocols: Vec<String>) -> Result<bool,
ContractError> {
 let sources: Vec<String> = read_sources(&e);

let verified = Self::verify_protocols_unordered(protocols, sources)?;
 return Ok(verified);
}

Recommendation

Remove the portion of code that is unreachable.

Status

Fixed on commit 72f86192d51baf53af86d1eb7a76637059d838ca. The
verify_protocols function is no longer executed.

© Coinspect 2024 40 / 44

XCL�015
Deposit function does not enforce
destination address

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

balanced-soroban-contracts/contracts/asset_manager/src/contract.rs:170

Description

The deposit function in the asset manager contract allows a None to
parameter, raising uncertainty about whether this behavior is intentional and,
if so, the rationale for permitting transfers to an empty destination.

As demonstrated in the code below, the deposit function assigns an empty
string to the to parameter if it is None:

pub fn deposit(
 e: Env,
 from: Address,
 token: Address,
 amount: u128,
 to: Option<String>,
 data: Option<Bytes>,

© Coinspect 2024 41 / 44

) -> Result<(), ContractError> {
 let deposit_to = to.unwrap_or(String::from_str(&e, ""));

Recommendation

Ensure the to parameter is neither None nor empty. Otherwise, document and
communicate this behavior clearly.

Status

Acknowledged. The development team stated that if a destination address is
not provided, ICON Balanced treats the sender's address as the destination
address.

© Coinspect 2024 42 / 44

XCL�016
Using old Stellar Soroban SDK version

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

Cargo.toml

Description

An older dependency is more likely to contain known security issues that have
been discovered and exploited over time. Additionally, it can also impact the
performance of the contracts as they may lack the optimizations and
enhancements that are typically introduced in newer versions, potentially
leading to higher fees.

Currently, the project uses the Soroban SDK version 20.5.0.

Recommendation

Use the latest Soroban SDK version, 21.7.3

© Coinspect 2024 43 / 44

Status

Fixed on commit 72f86192d51baf53af86d1eb7a76637059d838ca from the
Balanced contracts �SDK version 21.6.0) and commit
de9a2931d0a772413e2c4b1a4bf95abdc7b66207 from xCall multi
contracts �SDK version 21.7.4).

© Coinspect 2024 44 / 44

6. Disclaimer
The contents of this report are provided "as is" without warranty of any kind.
Coinspect is not responsible for any consequences of using the information
contained herein.

This report represents a point-in-time and time-boxed evaluation conducted
within a specific timeframe and scope agreed upon with the client. The
assessment's findings and recommendations are based on the information, source
code, and systems access provided by the client during the review period.

The assessment's findings should not be considered an exhaustive list of all
potential security issues. This report does not cover out-of-scope components
that may interact with the analyzed system, nor does it assess the operational
security of the organization that developed and deployed the system.

This report does not imply ongoing security monitoring or guaranteeing the
current security status of the assessed system. Due to the dynamic nature of
information security threats, new vulnerabilities may emerge after the assessment
period.

This report should not be considered an endorsement or disapproval of any
project or team. It does not provide investment advice and should not be used to
make investment decisions.

